DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Formation of Li 3 P Layer Enables Fast Li + Conduction across Li/Solid Polymer Electrolyte Interface

Abstract

Abstract Solid‐state polymer electrolytes provide better flexibility and electrode contact than their ceramic counterparts, making them a worthwhile pursuit for all‐solid‐state lithium‐metal batteries. However, their large Li/solid state electrolyte interfacial resistance, small critical current density, and rapid lithium dendrite growth during cycling still limit their viability. Owing to these restrictions, all‐solid‐state cells with solid polymer electrolytes must be cycled above room‐temperature and with a small current density. These problems can be mitigated with an in situ formed artificial solid electrolyte interphase that rapidly conducts Li + ions. Herein, a Li 3 P layer formed in situ at the Li‐metal/solid polymer electrolyte interphase is reported that significantly reduces the electrode/electrolyte interfacial resistance. Additionally, this layer increases the wettability of the solid polymer by the metallic lithium anode, allowing for the critical current density of lithium symmetric cells to be doubled by homogenizing the current density at the interface. All‐solid‐state Li/Li symmetric cells and Li/LiFePO 4 cells with the Li 3 P layer show improved cycling performance with a high current density.

Authors:
 [1];  [2];  [2];  [3];  [2];  [2];  [2];  [3];  [4]; ORCiD logo [2]
  1. Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science &, Engineering Beijing Institute of Technology Beijing 100081 P. R. China, Materials Research Program and the Texas Materials Institute ETC9.184 The University of Texas at Austin Austin TX 78712 USA
  2. Materials Research Program and the Texas Materials Institute ETC9.184 The University of Texas at Austin Austin TX 78712 USA
  3. The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
  4. Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science &, Engineering Beijing Institute of Technology Beijing 100081 P. R. China
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1608364
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Name: Advanced Functional Materials Journal Volume: 30 Journal Issue: 22; Journal ID: ISSN 1616-301X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Wu, Nan, Li, Yutao, Dolocan, Andrei, Li, Wei, Xu, Henghui, Xu, Biyi, Grundish, Nicholas S., Cui, Zhiming, Jin, Haibo, and Goodenough, John B. In Situ Formation of Li 3 P Layer Enables Fast Li + Conduction across Li/Solid Polymer Electrolyte Interface. Germany: N. p., 2020. Web. doi:10.1002/adfm.202000831.
Wu, Nan, Li, Yutao, Dolocan, Andrei, Li, Wei, Xu, Henghui, Xu, Biyi, Grundish, Nicholas S., Cui, Zhiming, Jin, Haibo, & Goodenough, John B. In Situ Formation of Li 3 P Layer Enables Fast Li + Conduction across Li/Solid Polymer Electrolyte Interface. Germany. https://doi.org/10.1002/adfm.202000831
Wu, Nan, Li, Yutao, Dolocan, Andrei, Li, Wei, Xu, Henghui, Xu, Biyi, Grundish, Nicholas S., Cui, Zhiming, Jin, Haibo, and Goodenough, John B. Mon . "In Situ Formation of Li 3 P Layer Enables Fast Li + Conduction across Li/Solid Polymer Electrolyte Interface". Germany. https://doi.org/10.1002/adfm.202000831.
@article{osti_1608364,
title = {In Situ Formation of Li 3 P Layer Enables Fast Li + Conduction across Li/Solid Polymer Electrolyte Interface},
author = {Wu, Nan and Li, Yutao and Dolocan, Andrei and Li, Wei and Xu, Henghui and Xu, Biyi and Grundish, Nicholas S. and Cui, Zhiming and Jin, Haibo and Goodenough, John B.},
abstractNote = {Abstract Solid‐state polymer electrolytes provide better flexibility and electrode contact than their ceramic counterparts, making them a worthwhile pursuit for all‐solid‐state lithium‐metal batteries. However, their large Li/solid state electrolyte interfacial resistance, small critical current density, and rapid lithium dendrite growth during cycling still limit their viability. Owing to these restrictions, all‐solid‐state cells with solid polymer electrolytes must be cycled above room‐temperature and with a small current density. These problems can be mitigated with an in situ formed artificial solid electrolyte interphase that rapidly conducts Li + ions. Herein, a Li 3 P layer formed in situ at the Li‐metal/solid polymer electrolyte interphase is reported that significantly reduces the electrode/electrolyte interfacial resistance. Additionally, this layer increases the wettability of the solid polymer by the metallic lithium anode, allowing for the critical current density of lithium symmetric cells to be doubled by homogenizing the current density at the interface. All‐solid‐state Li/Li symmetric cells and Li/LiFePO 4 cells with the Li 3 P layer show improved cycling performance with a high current density.},
doi = {10.1002/adfm.202000831},
journal = {Advanced Functional Materials},
number = 22,
volume = 30,
place = {Germany},
year = {Mon Apr 06 00:00:00 EDT 2020},
month = {Mon Apr 06 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adfm.202000831

Citation Metrics:
Cited by: 59 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Optimizing Li+ conductivity in a garnet framework
journal, January 2012

  • Li, Yutao; Han, Jian- Tao; Wang, Chang- An
  • Journal of Materials Chemistry, Vol. 22, Issue 30
  • DOI: 10.1039/c2jm31413d

Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries
journal, January 2017

  • Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1571707jes

Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells
journal, July 2019

  • Kasemchainan, Jitti; Zekoll, Stefanie; Spencer Jolly, Dominic
  • Nature Materials, Vol. 18, Issue 10
  • DOI: 10.1038/s41563-019-0438-9

High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
journal, January 2019


Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution
journal, May 2019

  • Adeli, Parvin; Bazak, J. David; Park, Kern Ho
  • Angewandte Chemie International Edition, Vol. 58, Issue 26
  • DOI: 10.1002/anie.201814222

The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies
journal, January 2017

  • Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 31
  • DOI: 10.1039/C7CP03304D

Recent advances in all-solid-state rechargeable lithium batteries
journal, March 2017


Flexible Composite Solid Electrolyte Facilitating Highly Stable “Soft Contacting” Li-Electrolyte Interface for Solid State Lithium-Ion Batteries
journal, September 2017

  • Yang, Luyi; Wang, Zijian; Feng, Yancong
  • Advanced Energy Materials, Vol. 7, Issue 22
  • DOI: 10.1002/aenm.201701437

Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density
journal, January 2016


Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries
journal, September 2018

  • Asano, Tetsuya; Sakai, Akihiro; Ouchi, Satoru
  • Advanced Materials, Vol. 30, Issue 44
  • DOI: 10.1002/adma.201803075

Mastering the interface for advanced all-solid-state lithium rechargeable batteries
journal, November 2016

  • Li, Yutao; Zhou, Weidong; Chen, Xi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 47
  • DOI: 10.1073/pnas.1615912113

Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers
journal, December 2017

  • Duan, Hui; Yin, Ya-Xia; Shi, Yang
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b10864

Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook
journal, May 2019

  • Pervez, Syed Atif; Cambaz, Musa Ali; Thangadurai, Venkataraman
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 25
  • DOI: 10.1021/acsami.9b02675

Fast Li + Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte
journal, January 2020

  • Wu, Nan; Chien, Po-Hsiu; Li, Yutao
  • Journal of the American Chemical Society, Vol. 142, Issue 5
  • DOI: 10.1021/jacs.9b12233

Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries
journal, April 2018

  • Li, Yutao; Chen, Xi; Dolocan, Andrei
  • Journal of the American Chemical Society, Vol. 140, Issue 20
  • DOI: 10.1021/jacs.8b03106

Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
journal, June 2016

  • Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1600422113

Polymer lithium-garnet interphase for an all-solid-state rechargeable battery
journal, November 2018


All solid-state polymer electrolytes for high-performance lithium ion batteries
journal, October 2016


Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries
journal, May 2019


Polymer Electrolytes for Lithium-Ion Batteries
journal, April 1998


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility
journal, January 2008

  • Deiseroth, Hans-Jörg; Kong, Shiao-Tong; Eckert, Hellmut
  • Angewandte Chemie International Edition, Vol. 47, Issue 4
  • DOI: 10.1002/anie.200703900

A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries
journal, June 2018

  • Li, Yutao; Xu, Henghui; Chien, Po-Hsiu
  • Angewandte Chemie International Edition, Vol. 57, Issue 28
  • DOI: 10.1002/anie.201804114

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes
journal, October 2017

  • Zhao, Chen-Zi; Zhang, Xue-Qiang; Cheng, Xin-Bing
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 42
  • DOI: 10.1073/pnas.1708489114