skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction

Abstract

Neurons have a membrane periodic skeleton (MPS) composed of actin rings interconnected by spectrin. Here, combining chemical and genetic gain- and loss-of-function assays, we show that in rat hippocampal neurons the MPS is an actomyosin network that controls axonal expansion and contraction. Using super-resolution microscopy, we analyzed the localization of axonal non-muscle myosin II (NMII). We show that active NMII light chains are colocalized with actin rings and organized in a circular periodic manner throughout the axon shaft. In contrast, NMII heavy chains are mostly positioned along the longitudinal axonal axis, being able to crosslink adjacent rings. NMII filaments can play contractile or scaffolding roles determined by their position relative to actin rings and activation state. We also show that MPS destabilization through NMII inactivation affects axonal electrophysiology, increasing action potential conduction velocity. In summary, our findings open new perspectives on axon diameter regulation, with important implications in neuronal biology.

Authors:
 [1];  [2];  [1]; ORCiD logo [3];  [4];  [5];  [1];  [1];  [1]; ORCiD logo [6];  [6];  [7];  [8];  [9];  [10]; ORCiD logo [11]; ORCiD logo [4]; ORCiD logo [1]
  1. Nerve Regeneration Group, Porto, Portugal, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
  2. Nerve Regeneration Group, Porto, Portugal, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal, ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
  3. i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal, ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal, Neuroengineering and Computational Neuroscience Group, INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
  4. i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal, Neuroengineering and Computational Neuroscience Group, INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
  5. Nerve Regeneration Group, Porto, Portugal, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal, ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal, Neuroengineering and Computational Neuroscience Group, INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
  6. Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
  7. i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal, Chromosome Instability and Dynamics Group, Porto, Portugal
  8. i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal, Advanced Light Microscopy, IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
  9. Stowers Institute for Medical Research, Kansas City, United States
  10. International Iberian Nanotechnology Laboratory, Braga, Portugal
  11. Advanced Light Microscopy Facility, EMBL, Heidelberg, Germany
Publication Date:
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE), Nuclear Fuel Cycle and Supply Chain
OSTI Identifier:
1607599
Alternate Identifier(s):
OSTI ID: 1607600
Grant/Contract Number:  
SFRH/BPD/114912/2016; SFRH/BD/136760/2018; PD/BD/135491/2018
Resource Type:
Published Article
Journal Name:
eLife
Additional Journal Information:
Journal Name: eLife Journal Volume: 9; Journal ID: ISSN 2050-084X
Publisher:
eLife Sciences Publications, Ltd.
Country of Publication:
United States
Language:
English

Citation Formats

Costa, Ana Rita, Sousa, Sara C., Pinto-Costa, Rita, Mateus, José C., Lopes, Cátia DF, Costa, Ana Catarina, Rosa, David, Machado, Diana, Pajuelo, Luis, Wang, Xuewei, Zhou, Feng-quan, Pereira, António J., Sampaio, Paula, Rubinstein, Boris Y., Mendes Pinto, Inês, Lampe, Marko, Aguiar, Paulo, and Sousa, Monica M.. The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction. United States: N. p., 2020. Web. https://doi.org/10.7554/eLife.55471.
Costa, Ana Rita, Sousa, Sara C., Pinto-Costa, Rita, Mateus, José C., Lopes, Cátia DF, Costa, Ana Catarina, Rosa, David, Machado, Diana, Pajuelo, Luis, Wang, Xuewei, Zhou, Feng-quan, Pereira, António J., Sampaio, Paula, Rubinstein, Boris Y., Mendes Pinto, Inês, Lampe, Marko, Aguiar, Paulo, & Sousa, Monica M.. The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction. United States. https://doi.org/10.7554/eLife.55471
Costa, Ana Rita, Sousa, Sara C., Pinto-Costa, Rita, Mateus, José C., Lopes, Cátia DF, Costa, Ana Catarina, Rosa, David, Machado, Diana, Pajuelo, Luis, Wang, Xuewei, Zhou, Feng-quan, Pereira, António J., Sampaio, Paula, Rubinstein, Boris Y., Mendes Pinto, Inês, Lampe, Marko, Aguiar, Paulo, and Sousa, Monica M.. Fri . "The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction". United States. https://doi.org/10.7554/eLife.55471.
@article{osti_1607599,
title = {The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction},
author = {Costa, Ana Rita and Sousa, Sara C. and Pinto-Costa, Rita and Mateus, José C. and Lopes, Cátia DF and Costa, Ana Catarina and Rosa, David and Machado, Diana and Pajuelo, Luis and Wang, Xuewei and Zhou, Feng-quan and Pereira, António J. and Sampaio, Paula and Rubinstein, Boris Y. and Mendes Pinto, Inês and Lampe, Marko and Aguiar, Paulo and Sousa, Monica M.},
abstractNote = {Neurons have a membrane periodic skeleton (MPS) composed of actin rings interconnected by spectrin. Here, combining chemical and genetic gain- and loss-of-function assays, we show that in rat hippocampal neurons the MPS is an actomyosin network that controls axonal expansion and contraction. Using super-resolution microscopy, we analyzed the localization of axonal non-muscle myosin II (NMII). We show that active NMII light chains are colocalized with actin rings and organized in a circular periodic manner throughout the axon shaft. In contrast, NMII heavy chains are mostly positioned along the longitudinal axonal axis, being able to crosslink adjacent rings. NMII filaments can play contractile or scaffolding roles determined by their position relative to actin rings and activation state. We also show that MPS destabilization through NMII inactivation affects axonal electrophysiology, increasing action potential conduction velocity. In summary, our findings open new perspectives on axon diameter regulation, with important implications in neuronal biology.},
doi = {10.7554/eLife.55471},
journal = {eLife},
number = ,
volume = 9,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.7554/eLife.55471

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Regulation of Axon Diameter: From Axonal Circumferential Contractility to Activity-Dependent Axon Swelling
journal, September 2018

  • Costa, Ana Rita; Pinto-Costa, Rita; Sousa, Sara Castro
  • Frontiers in Molecular Neuroscience, Vol. 11
  • DOI: 10.3389/fnmol.2018.00319

Actin/Myosin-V- and Activity-Dependent Inter-synaptic Vesicle Exchange in Central Neurons
journal, February 2017


Axons break in animals lacking β-spectrin
journal, January 2007

  • Hammarlund, Marc; Jorgensen, Erik M.; Bastiani, Michael J.
  • Journal of Cell Biology, Vol. 176, Issue 3
  • DOI: 10.1083/jcb.200611117

Determinants of conduction velocity in myelinated nerve fibers
journal, March 1980


Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor
journal, March 2003


Signaling by Neuronal Swelling
journal, January 2011


Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter
journal, October 2017


Localized Myosin II Activity Regulates Assembly and Plasticity of the Axon Initial Segment
journal, February 2018


A note on conduction velocity
journal, July 1954


Nonmuscle Myosin II Isoforms Coassemble in Living Cells
journal, May 2014


Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity
journal, March 1989

  • Ishihara, H.; Martin, B. L.; Brautigan, D. L.
  • Biochemical and Biophysical Research Communications, Vol. 159, Issue 3
  • DOI: 10.1016/0006-291X(89)92189-X

Irregular geometries in normal unmyelinated axons: A 3D serial EM analysis
journal, December 1990

  • Greenberg, M. M.; Leitao, C.; Trogadis, J.
  • Journal of Neurocytology, Vol. 19, Issue 6
  • DOI: 10.1007/BF01186825

Myosin II has distinct functions in PNS and CNS myelin sheath formation
journal, September 2008

  • Wang, Haibo; Tewari, Ambika; Einheber, Steven
  • Journal of Cell Biology, Vol. 182, Issue 6
  • DOI: 10.1083/jcb.200802091

Interfacing Microfluidics with Microelectrode Arrays for Studying Neuronal Communication and Axonal Signal Propagation
journal, January 2018

  • Lopes, Cátia D. F.; Mateus, José C.; Aguiar, Paulo
  • Journal of Visualized Experiments, Issue 142
  • DOI: 10.3791/58878

Culturing hippocampal neurons
journal, December 2006


Myosin phosphatase target subunit: Many roles in cell function
journal, April 2008

  • Matsumura, Fumio; Hartshorne, David J.
  • Biochemical and Biophysical Research Communications, Vol. 369, Issue 1
  • DOI: 10.1016/j.bbrc.2007.12.090

The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap
journal, June 2015


Characterization of Three Full-length Human Nonmuscle Myosin II Paralogs
journal, September 2013

  • Billington, Neil; Wang, Aibing; Mao, Jian
  • Journal of Biological Chemistry, Vol. 288, Issue 46
  • DOI: 10.1074/jbc.M113.499848

Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons
journal, December 2012


Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes
journal, August 2008

  • Heilemann, Mike; van de Linde, Sebastian; Schüttpelz, Mark
  • Angewandte Chemie International Edition, Vol. 47, Issue 33
  • DOI: 10.1002/anie.200802376

Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings
journal, December 2019

  • Vassilopoulos, Stéphane; Gibaud, Solène; Jimenez, Angélique
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-13835-6

Myosin IIA Heavy Chain Phosphorylation Mediates Adhesion Maturation and Protrusion in Three Dimensions
journal, January 2017

  • Rai, Vandana; Thomas, Dustin G.; Beach, Jordan R.
  • Journal of Biological Chemistry, Vol. 292, Issue 8
  • DOI: 10.1074/jbc.M116.733402

Fluorescence nanoscopy by ground-state depletion and single-molecule return
journal, September 2008

  • Fölling, Jonas; Bossi, Mariano; Bock, Hannes
  • Nature Methods, Vol. 5, Issue 11
  • DOI: 10.1038/nmeth.1257

A major role for the Rho-associated coiled coil forming protein kinase in G-protein-mediated Ca 2+ sensitization through inhibition of myosin phosphatase in rabbit trachea
journal, October 1999

  • Iizuka, Kunihiko; Yoshii, Akihiro; Samizo, Koichi
  • British Journal of Pharmacology, Vol. 128, Issue 4
  • DOI: 10.1038/sj.bjp.0702864

A Myosin V Inhibitor Based on Privileged Chemical Scaffolds
journal, September 2010

  • Islam, Kabirul; Chin, Harvey F.; Olivares, Adrian O.
  • Angewandte Chemie International Edition, Vol. 49, Issue 45
  • DOI: 10.1002/anie.201004026

Non-muscle myosin II takes centre stage in cell adhesion and migration
journal, November 2009

  • Vicente-Manzanares, Miguel; Ma, Xuefei; Adelstein, Robert S.
  • Nature Reviews Molecular Cell Biology, Vol. 10, Issue 11
  • DOI: 10.1038/nrm2786

µSpikeHunter: An advanced computational tool for the analysis of neuronal communication and action potential propagation in microfluidic platforms
journal, April 2019


The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter
journal, April 2016