DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants

Abstract

Piezoelectric microsystems are of use in areas such as mechanical sensing, energy conversion and robotics. The systems typically have a planar structure, but transforming them into complex three-dimensional (3D) frameworks could enhance and extend their various modes of operation. Here, we report a controlled, nonlinear buckling process to convert lithographically defined two-dimensional patterns of electrodes and thin films of piezoelectric polymers into sophisticated 3D piezoelectric microsystems. To illustrate the engineering versatility of the approach, we create more than twenty different 3D geometries. With these structures, we then demonstrate applications in energy harvesting with tailored mechanical properties and root-mean-square voltages ranging from 2 mV to 790 mV, in multifunctional sensors for robotic prosthetic interfaces with improved responsivity (for example, anisotropic responses and sensitivity of 60 mV N-1 for normal force), and in bio-integrated devices with in vivo operational capabilities. We note the 3D geometries, especially those with ultralow stiffnesses or asymmetric layouts, yield unique mechanical attributes and levels of functionality that would be difficult or impossible to achieve with conventional two-dimensional designs.

Authors:
 [1]; ORCiD logo [1];  [1];  [2];  [1];  [3];  [4];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [5]; ORCiD logo [6]; ORCiD logo [1]; ORCiD logo [1]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States); Tianjin Univ. (China)
  3. Univ. of Missouri, Columbia, MO (United States)
  4. Northwestern Univ., Evanston, IL (United States); Shanghai Jiaotong Univ. (China)
  5. Northwestern Univ., Evanston, IL (United States); Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States)
  6. Tsinghua Univ., Beijing (China)
Publication Date:
Research Org.:
Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Natural Science Foundation of China (NSFC); National Science Foundation (NSF); Ryan Fellowship; Northwestern University International Institute for Nanotechnology
OSTI Identifier:
1607431
Grant/Contract Number:  
FG02-07ER46471
Resource Type:
Accepted Manuscript
Journal Name:
Nature Electronics
Additional Journal Information:
Journal Volume: 2; Journal Issue: 1; Journal ID: ISSN 2520-1131
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; Devices for energy harvesting; Electrical and electronic engineering; Sensors and biosensors

Citation Formats

Han, Mengdi, Wang, Heling, Yang, Yiyuan, Liang, Cunman, Bai, Wubin, Yan, Zheng, Li, Haibo, Xue, Yeguang, Wang, Xinlong, Akar, Banu, Zhao, Hangbo, Luan, Haiwen, Lim, Jaeman, Kandela, Irawati, Ameer, Guillermo A., Zhang, Yihui, Huang, Yonggang, and Rogers, John A. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. United States: N. p., 2019. Web. doi:10.1038/s41928-018-0189-7.
Han, Mengdi, Wang, Heling, Yang, Yiyuan, Liang, Cunman, Bai, Wubin, Yan, Zheng, Li, Haibo, Xue, Yeguang, Wang, Xinlong, Akar, Banu, Zhao, Hangbo, Luan, Haiwen, Lim, Jaeman, Kandela, Irawati, Ameer, Guillermo A., Zhang, Yihui, Huang, Yonggang, & Rogers, John A. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. United States. https://doi.org/10.1038/s41928-018-0189-7
Han, Mengdi, Wang, Heling, Yang, Yiyuan, Liang, Cunman, Bai, Wubin, Yan, Zheng, Li, Haibo, Xue, Yeguang, Wang, Xinlong, Akar, Banu, Zhao, Hangbo, Luan, Haiwen, Lim, Jaeman, Kandela, Irawati, Ameer, Guillermo A., Zhang, Yihui, Huang, Yonggang, and Rogers, John A. Wed . "Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants". United States. https://doi.org/10.1038/s41928-018-0189-7. https://www.osti.gov/servlets/purl/1607431.
@article{osti_1607431,
title = {Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants},
author = {Han, Mengdi and Wang, Heling and Yang, Yiyuan and Liang, Cunman and Bai, Wubin and Yan, Zheng and Li, Haibo and Xue, Yeguang and Wang, Xinlong and Akar, Banu and Zhao, Hangbo and Luan, Haiwen and Lim, Jaeman and Kandela, Irawati and Ameer, Guillermo A. and Zhang, Yihui and Huang, Yonggang and Rogers, John A.},
abstractNote = {Piezoelectric microsystems are of use in areas such as mechanical sensing, energy conversion and robotics. The systems typically have a planar structure, but transforming them into complex three-dimensional (3D) frameworks could enhance and extend their various modes of operation. Here, we report a controlled, nonlinear buckling process to convert lithographically defined two-dimensional patterns of electrodes and thin films of piezoelectric polymers into sophisticated 3D piezoelectric microsystems. To illustrate the engineering versatility of the approach, we create more than twenty different 3D geometries. With these structures, we then demonstrate applications in energy harvesting with tailored mechanical properties and root-mean-square voltages ranging from 2 mV to 790 mV, in multifunctional sensors for robotic prosthetic interfaces with improved responsivity (for example, anisotropic responses and sensitivity of 60 mV N-1 for normal force), and in bio-integrated devices with in vivo operational capabilities. We note the 3D geometries, especially those with ultralow stiffnesses or asymmetric layouts, yield unique mechanical attributes and levels of functionality that would be difficult or impossible to achieve with conventional two-dimensional designs.},
doi = {10.1038/s41928-018-0189-7},
journal = {Nature Electronics},
number = 1,
volume = 2,
place = {United States},
year = {Wed Jan 16 00:00:00 EST 2019},
month = {Wed Jan 16 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 252 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals
journal, October 2015

  • Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9422

Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons
journal, March 2011

  • Qi, Yi; Kim, Jihoon; Nguyen, Thanh D.
  • Nano Letters, Vol. 11, Issue 3
  • DOI: 10.1021/nl104412b

Direct-Current Nanogenerator Driven by Ultrasonic Waves
journal, April 2007


Biomimetic 4D printing
journal, January 2016

  • Sydney Gladman, A.; Matsumoto, Elisabetta A.; Nuzzo, Ralph G.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4544

Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators
journal, January 2014


Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films
journal, March 2013

  • Li, Mengyuan; Wondergem, Harry J.; Spijkman, Mark-Jan
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3577

r-Shaped Hybrid Nanogenerator with Enhanced Piezoelectricity
journal, September 2013

  • Han, Mengdi; Zhang, Xiao-Sheng; Meng, Bo
  • ACS Nano, Vol. 7, Issue 10
  • DOI: 10.1021/nn404023v

Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester
journal, April 2014

  • Hwang, Geon-Tae; Park, Hyewon; Lee, Jeong-Ho
  • Advanced Materials, Vol. 26, Issue 28, p. 4880-4887
  • DOI: 10.1002/adma.201400562

Biodegradable Piezoelectric Force Sensor
journal, January 2018

  • Curry, Eli J.; Ke, Kai; Chorsi, Meysam T.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 5
  • DOI: 10.1073/pnas.1710874115

Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material
journal, October 2016

  • Yan, Yongke; Zhou, Jie E.; Maurya, Deepam
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13089

Printing, folding and assembly methods for forming 3D mesostructures in advanced materials
journal, March 2017


Measuring Single Cardiac Myocyte Contractile Force via Moving a Magnetic Bead
journal, February 2005


Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging
journal, April 2018


Highly stretchable electroluminescent skin for optical signaling and tactile sensing
journal, March 2016


Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo
journal, July 2012

  • Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin
  • Nature Medicine, Vol. 18, Issue 8
  • DOI: 10.1038/nm.2823

Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces
journal, March 2018


Ultrahigh piezoelectricity in ferroelectric ceramics by design
journal, March 2018


Virus-based piezoelectric energy generation
journal, May 2012

  • Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.69

Giant Piezoelectricity on Si for Hyperactive MEMS
journal, November 2011


Controlled Flight of a Biologically Inspired, Insect-Scale Robot
journal, May 2013


Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling
journal, January 2015


Nano-origami: Art and function
journal, October 2015


Macroporous nanowire nanoelectronic scaffolds for synthetic tissues
journal, August 2012

  • Tian, Bozhi; Liu, Jia; Dvir, Tal
  • Nature Materials, Vol. 11, Issue 11, p. 986-994
  • DOI: 10.1038/nmat3404

Strong, lightweight, and recoverable three-dimensional ceramic nanolattices
journal, September 2014


Microfibre–nanowire hybrid structure for energy scavenging
journal, February 2008

  • Qin, Yong; Wang, Xudong; Wang, Zhong Lin
  • Nature, Vol. 451, Issue 7180
  • DOI: 10.1038/nature06601

Flexible triboelectric generator
journal, March 2012


A review of vibration-based MEMS piezoelectric energy harvesters
journal, January 2011


Mechanics of curvilinear electronics
journal, January 2010

  • Wang, Shuodao; Xiao, Jianliang; Song, Jizhou
  • Soft Matter, Vol. 6, Issue 22
  • DOI: 10.1039/c0sm00579g

Observation of piezoelectricity in free-standing monolayer MoS2
journal, December 2014


Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications
journal, January 2007


Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications
journal, January 2008


Generating electricity by moving a droplet of ionic liquid along graphene
journal, April 2014


Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials
journal, September 2016


Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress
journal, February 2017


Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
journal, July 2017


A bioinspired soft manipulator for minimally invasive surgery
journal, May 2015


3D Tunable, Multiscale, and Multistable Vibrational Micro-Platforms Assembled by Compressive Buckling
journal, March 2017

  • Ning, Xin; Wang, Heling; Yu, Xinge
  • Advanced Functional Materials, Vol. 27, Issue 14
  • DOI: 10.1002/adfm.201605914

Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics
journal, October 2014


Epidermal Electronics
journal, August 2011


Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging
journal, April 2013


Piezoelectric nanoribbons for monitoring cellular deformations
journal, July 2012

  • Nguyen, Thanh D.; Deshmukh, Nikhil; Nagarah, John M.
  • Nature Nanotechnology, Vol. 7, Issue 9
  • DOI: 10.1038/nnano.2012.112

Optogenetic skeletal muscle-powered adaptive biological machines
journal, March 2016

  • Raman, Ritu; Cvetkovic, Caroline; Uzel, Sebastien G. M.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 13
  • DOI: 10.1073/pnas.1516139113

Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics
journal, January 2018


Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm
journal, January 2014

  • Dagdeviren, Canan; Yang, Byung Duk; Su, Yewang
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 5, p. 1927-1932
  • DOI: 10.1073/pnas.1317233111

Fabrication and Deformation of 3D Multilayered Kirigami Microstructures
journal, January 2018


On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion
journal, December 2004

  • Persson, B. N. J.; Albohr, O.; Tartaglino, U.
  • Journal of Physics: Condensed Matter, Vol. 17, Issue 1
  • DOI: 10.1088/0953-8984/17/1/R01

An organic-inorganic perovskite ferroelectric with large piezoelectric response
journal, July 2017


Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications
journal, September 2017


Works referencing / citing this record:

Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking
journal, July 2019

  • Park, Yoonseok; Luan, Haiwen; Kwon, Kyeongha
  • Advanced Functional Materials, Vol. 29, Issue 40
  • DOI: 10.1002/adfm.201903181

Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches
journal, June 2019


Mechanically‐Guided Structural Designs in Stretchable Inorganic Electronics
journal, July 2019


Remotely Triggered Assembly of 3D Mesostructures Through Shape‐Memory Effects
journal, November 2019


Bioinspired Prosthetic Interfaces
journal, February 2020

  • Li, Pengju; Anwar Ali, Hashina Parveen; Cheng, Wen
  • Advanced Materials Technologies, Vol. 5, Issue 3
  • DOI: 10.1002/admt.201900856

Enhancement of piezoelectric vibration energy harvesting with auxetic boosters
journal, November 2019

  • Eghbali, Pejman; Younesian, Davood; Farhangdoust, Saman
  • International Journal of Energy Research, Vol. 44, Issue 2
  • DOI: 10.1002/er.5010

The recent advances in self‐powered medical information sensors
journal, December 2019


Manufacturing of 3D multifunctional microelectronic devices: challenges and opportunities
journal, June 2019


Metal-hygroscopic polymer conductors that can secrete solders for connections in stretchable devices
journal, January 2020

  • Tang, Lixue; Mou, Lei; Shang, Jin
  • Materials Horizons, Vol. 7, Issue 4
  • DOI: 10.1039/c9mh01761e

Buckling and twisting of advanced materials into morphable 3D mesostructures
journal, June 2019

  • Zhao, Hangbo; Li, Kan; Han, Mengdi
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 27
  • DOI: 10.1073/pnas.1901193116

Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling
journal, July 2019

  • Liu, Yuan; Wang, Xueju; Xu, Yameng
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 31
  • DOI: 10.1073/pnas.1907732116

Structures, stabilities and piezoelectric properties of Janus gallium oxides and chalcogenides monolayers
journal, November 2019


An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3D Structures
journal, November 2019

  • Xu, Zheng; Fan, Zhichao; Zi, Yanyang
  • Journal of Applied Mechanics, Vol. 87, Issue 3
  • DOI: 10.1115/1.4045367

A review on piezoelectric fibers and nanowires for energy harvesting
journal, September 2019


Effect of phase in fast frequency measurements for sensors embedded in robotic systems
journal, July 2019

  • Sanchez-Lopez, Juan de Dios; Murrieta-Rico, Fabian N.; Petranovskii, Vitalii
  • International Journal of Advanced Robotic Systems, Vol. 16, Issue 4
  • DOI: 10.1177/1729881419869727

Piezoelectric Films Based on Polyethylene Modified by Aluminosilicate Filler
journal, August 2019

  • Kaczmarek, Halina; Królikowski, Bogusław; Chylińska, Marta
  • Polymers, Vol. 11, Issue 8
  • DOI: 10.3390/polym11081345

Piezoelastic PVDF/TPU Nanofibrous Composite Membrane: Fabrication and Characterization
journal, October 2019

  • Elnabawy, Eman; Hassanain, Ahmed H.; Shehata, Nader
  • Polymers, Vol. 11, Issue 10
  • DOI: 10.3390/polym11101634

Buckling and twisting of advanced materials into morphable 3D mesostructures.
text, January 2019

  • Zhao, Hangbo; Li, Kan; Han, Mengdi
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.41199

Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking
journal, February 2020

  • Park, Yoonseok; Luan, Haiwen; Kwon, Kyeongha
  • Advanced Functional Materials, Vol. 30, Issue 12
  • DOI: 10.1002/adfm.202000918

Piezoelastic PVDF/TPU Nanofibrous Composite Membrane: Fabrication and Characterization
journal, October 2019

  • Elnabawy, Eman; Hassanain, Ahmed H.; Shehata, Nader
  • Polymers, Vol. 11, Issue 10
  • DOI: 10.3390/polym11101634