Carbon footprint of global natural gas supplies to China
- Argonne National Lab. (ANL), Lemont, IL (United States)
- Aramco Services Company, Novi, MI (United States). Aramco Research Center-Detroit
As natural gas demand surges in China, driven by the coal-to-gas switching policy, widespread attention is focused on its impacts on global gas supply-demand rebalance and greenhouse gas (GHG) emissions. Here, for the first time, we estimate well-to-city-gate GHG emissions of gas supplies for China, based on analyses of field-specific characteristics of 104 fields in 15 countries. Results show GHG intensities of supplies from 104 fields vary from 6.2 to 43.3 g CO2eq MJ-1. Due to the increase of GHG-intensive gas supplies from Russia, Central Asia, and domestic shale gas fields, the supply-energy-weighted average GHG intensity is projected to increase from 21.7 in 2016 to 23.3 CO2eq MJ-1 in 2030, and total well-to-city-gate emissions of gas supplies are estimated to grow by ~3 times. While securing gas supply is a top priority for the Chinese government, decreasing GHG intensity should be considered in meeting its commitment to emission reductions.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE); Aramco Services Company, Novi, MI (United States)
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1607379
- Journal Information:
- Nature Communications, Vol. 11, Issue 1; ISSN 2041-1723
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Greenhouse gas emissions embodied in the U.S. solar photovoltaic supply chain
Impact of shale gas development on regional water resources in China from water footprint assessment view