In-situ metal binder-phase formation to make WC-FeNi Cermets with spark plasma sintering from WC, Fe, Ni, and carbon powders
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- Colorado State Univ., Fort Collins, CO (United States)
In this work, high-density WC-FeNi ceramic-metal (cermet) composites were fabricated using liquid-phase spark plasma sintering/field-assisted sintering technology (SPS/FAST) with in-situ formation of metal binder phase. The precursor materials were micron-sized powders of WC, Fe, Ni, and C. A low melting point from a eutectic reaction of the powders enabled the in-situ formation of FeNi alloy and facilitates liquid-phase sintering of the WC. The carbon powder was added to stabilize the formation of the binder phase. Electron backscatter diffraction (EBSD) was performed to measure grain size and orientation. The composite exhibited a 99% theoretical density and a microstructure consisting of rounded and contiguous WC grains. The average grain size is 10.5 μm. The composite has a maximum hardness of 16.1 GPa. This research provides a fast and cost-effective approach to fabricate hard metals.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office; USDOE
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1607183
- Alternate ID(s):
- OSTI ID: 1777532
- Journal Information:
- International Journal of Refractory and Hard Metals, Vol. 88, Issue C; ISSN 0263-4368
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method
Shape retention and infiltration height in complex WC-Co parts made via binder jet of WC with subsequent Co melt infiltration