skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New Family of Argyrodite Thioantimonate Lithium Superionic Conductors

Abstract

We report on a new family of argyrodite lithium superionic conductors, as solid solutions Li6+xMxSb1–xS5I (M = Si, Ge, Sn), that exhibit superionic conductivity. These represent the first antimony argyrodites to date. Exploration of the series using a combination of single crystal X-ray and synchrotron/neutron powder diffraction, combined with impedance spectroscopy, reveals that an optimal degree of substitution (x), and substituent induces slight S2–/I anion site disorder—but more importantly drives Li+ cation site disorder. The additional, delocalized Li-ion density is located in new high energy lattice sites that provide intermediate interstitial positions (local minima) for Li+ diffusion and activate concerted ion migration, leading to a low activation energy of 0.25 eV. Excellent room temperature ionic conductivity of 14.8 mS·cm–1 is exhibited for cold-pressed pellets—up to 24 mS·cm–1 for sintered pellets—among the highest values reported to date. This enables all-solid-state battery prototypes that exhibit promising properties. Furthermore, even at -78 °C, suitable bulk ionic conductivity of the electrolyte is retained (0.25 mS·cm–1). Selected thioantimonate iodides demonstrate good compatibility with Li metal, sustaining over 1000 h of Li stripping/plating at current densities up to 0.6 mA·cm–2. The significantly enhanced Li ion conduction and lowered activation energy barrier with increasing site disorder revealsmore » an important strategy toward the development of superionic conductors.« less

Authors:
ORCiD logo [1];  [1];  [2];  [3]; ORCiD logo [1]
  1. Univ. of Waterloo, ON (Canada)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Scattering Division
  3. BASF SE, Ludwigshafen (Germany)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1606830
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 141; Journal Issue: 48; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Diseases and disorders; Granular materials; Crystal structure; Physical and chemical processes; Ionic conductivity

Citation Formats

Zhou, Laidong, Assoud, Abdeljalil, Zhang, Qiang, Wu, Xiaohan, and Nazar, Linda F. New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. United States: N. p., 2019. Web. https://doi.org/10.1021/jacs.9b08357.
Zhou, Laidong, Assoud, Abdeljalil, Zhang, Qiang, Wu, Xiaohan, & Nazar, Linda F. New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. United States. https://doi.org/10.1021/jacs.9b08357
Zhou, Laidong, Assoud, Abdeljalil, Zhang, Qiang, Wu, Xiaohan, and Nazar, Linda F. Wed . "New Family of Argyrodite Thioantimonate Lithium Superionic Conductors". United States. https://doi.org/10.1021/jacs.9b08357. https://www.osti.gov/servlets/purl/1606830.
@article{osti_1606830,
title = {New Family of Argyrodite Thioantimonate Lithium Superionic Conductors},
author = {Zhou, Laidong and Assoud, Abdeljalil and Zhang, Qiang and Wu, Xiaohan and Nazar, Linda F.},
abstractNote = {We report on a new family of argyrodite lithium superionic conductors, as solid solutions Li6+xMxSb1–xS5I (M = Si, Ge, Sn), that exhibit superionic conductivity. These represent the first antimony argyrodites to date. Exploration of the series using a combination of single crystal X-ray and synchrotron/neutron powder diffraction, combined with impedance spectroscopy, reveals that an optimal degree of substitution (x), and substituent induces slight S2–/I– anion site disorder—but more importantly drives Li+ cation site disorder. The additional, delocalized Li-ion density is located in new high energy lattice sites that provide intermediate interstitial positions (local minima) for Li+ diffusion and activate concerted ion migration, leading to a low activation energy of 0.25 eV. Excellent room temperature ionic conductivity of 14.8 mS·cm–1 is exhibited for cold-pressed pellets—up to 24 mS·cm–1 for sintered pellets—among the highest values reported to date. This enables all-solid-state battery prototypes that exhibit promising properties. Furthermore, even at -78 °C, suitable bulk ionic conductivity of the electrolyte is retained (0.25 mS·cm–1). Selected thioantimonate iodides demonstrate good compatibility with Li metal, sustaining over 1000 h of Li stripping/plating at current densities up to 0.6 mA·cm–2. The significantly enhanced Li ion conduction and lowered activation energy barrier with increasing site disorder reveals an important strategy toward the development of superionic conductors.},
doi = {10.1021/jacs.9b08357},
journal = {Journal of the American Chemical Society},
number = 48,
volume = 141,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Comparison of ionic conductivities between cold pressed powders and sintered pellets for some recently reported superionic conductors.

Save / Share:

Works referenced in this record:

A solid future for battery development
journal, September 2016


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


New horizons for inorganic solid state ion conductors
journal, January 2018

  • Zhang, Zhizhen; Shao, Yuanjun; Lotsch, Bettina
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/C8EE01053F

Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries
journal, May 2018


Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor
journal, January 2015

  • Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja508723m

Li 10 SnP 2 S 12 : An Affordable Lithium Superionic Conductor
journal, October 2013

  • Bron, Philipp; Johansson, Sebastian; Zick, Klaus
  • Journal of the American Chemical Society, Vol. 135, Issue 42
  • DOI: 10.1021/ja407393y

Single-Ion Li + , Na + , and Mg 2+ Solid Electrolytes Supported by a Mesoporous Anionic Cu–Azolate Metal–Organic Framework
journal, September 2017

  • Park, Sarah S.; Tulchinsky, Yuri; Dincă, Mircea
  • Journal of the American Chemical Society, Vol. 139, Issue 38
  • DOI: 10.1021/jacs.7b06197

Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity
journal, April 2019

  • Hu, Yiming; Dunlap, Nathan; Wan, Shun
  • Journal of the American Chemical Society, Vol. 141, Issue 18
  • DOI: 10.1021/jacs.9b02448

High Li + and Mg 2+ Conductivity in a Cu-Azolate Metal–Organic Framework
journal, February 2019

  • Miner, Elise M.; Park, Sarah S.; Dincă, Mircea
  • Journal of the American Chemical Society, Vol. 141, Issue 10
  • DOI: 10.1021/jacs.8b13418

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries
journal, May 2016


Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences
journal, December 2017

  • Wang, Shaofei; Xu, Henghui; Li, Wangda
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b09531

Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes
journal, May 2018


Li 2 OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes
journal, January 2016

  • Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh
  • Journal of the American Chemical Society, Vol. 138, Issue 6
  • DOI: 10.1021/jacs.5b11851

Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte
journal, September 2016

  • Luo, Wei; Gong, Yunhui; Zhu, Yizhou
  • Journal of the American Chemical Society, Vol. 138, Issue 37
  • DOI: 10.1021/jacs.6b06777

Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries
journal, April 2018

  • Li, Yutao; Chen, Xi; Dolocan, Andrei
  • Journal of the American Chemical Society, Vol. 140, Issue 20
  • DOI: 10.1021/jacs.8b03106

Interface Limited Lithium Transport in Solid-State Batteries
journal, December 2013

  • Santhanagopalan, Dhamodaran; Qian, Danna; McGilvray, Thomas
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 2
  • DOI: 10.1021/jz402467x

Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries
journal, May 2017

  • Zhang, Wenbo; Weber, Dominik A.; Weigand, Harald
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 21
  • DOI: 10.1021/acsami.7b01137

Interface Re-Engineering of Li 10 GeP 2 S 12 Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life
journal, January 2018

  • Zhang, Zhihua; Chen, Shaojie; Yang, Jing
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 3
  • DOI: 10.1021/acsami.7b16176

An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal
journal, December 2017


Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating
journal, November 2018

  • Pang, Quan; Zhou, Laidong; Nazar, Linda F.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 49
  • DOI: 10.1073/pnas.1809187115

Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries
journal, May 2019

  • Liang, Jia-Yan; Zeng, Xian-Xiang; Zhang, Xu-Dong
  • Journal of the American Chemical Society, Vol. 141, Issue 23
  • DOI: 10.1021/jacs.9b03517

Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers
journal, December 2017

  • Duan, Hui; Yin, Ya-Xia; Shi, Yang
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b10864

Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries
journal, January 2018

  • Koerver, Raimund; Zhang, Wenbo; de Biasi, Lea
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/C8EE00907D

All-Solid-State Batteries with Thick Electrode Configurations
journal, January 2018

  • Kato, Yuki; Shiotani, Shinya; Morita, Keisuke
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 3
  • DOI: 10.1021/acs.jpclett.7b02880

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li 6+ x P 1– x Ge x S 5 I for All-Solid-State Batteries
journal, October 2018

  • Kraft, Marvin A.; Ohno, Saneyuki; Zinkevich, Tatiana
  • Journal of the American Chemical Society, Vol. 140, Issue 47
  • DOI: 10.1021/jacs.8b10282

Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility
journal, January 2008

  • Deiseroth, Hans-Jörg; Kong, Shiao-Tong; Eckert, Hellmut
  • Angewandte Chemie International Edition, Vol. 47, Issue 4
  • DOI: 10.1002/anie.200703900

Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes
journal, October 2011

  • Rayavarapu, Prasada Rao; Sharma, Neeraj; Peterson, Vanessa K.
  • Journal of Solid State Electrochemistry, Vol. 16, Issue 5
  • DOI: 10.1007/s10008-011-1572-8

Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li 6 PS 5 Cl Solid-State Electrolyte
journal, September 2018

  • Yu, Chuang; Ganapathy, Swapna; Hageman, Jart
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 39
  • DOI: 10.1021/acsami.8b07476

Solvent-Engineered Design of Argyrodite Li 6 PS 5 X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity
journal, November 2018


Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes
journal, January 2013

  • Kuhn, Alexander; Duppel, Viola; Lotsch, Bettina V.
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41728j

Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 Solid Electrolyte
journal, August 2017

  • Xu, Ruochen; Wu, Zhang; Zhang, Shenzhao
  • Chemistry - A European Journal, Vol. 23, Issue 56
  • DOI: 10.1002/chem.201703116

Advanced sulfide solid electrolyte by core-shell structural design
journal, October 2018


Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li 6 PS 5 X (X = Cl, Br, I)
journal, July 2017

  • Kraft, Marvin A.; Culver, Sean P.; Calderon, Mario
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b06327

Further Evidence for Energy Landscape Flattening in the Superionic Argyrodites Li 6+ x P 1– x M x S 5 I (M = Si, Ge, Sn)
journal, June 2019


A profile refinement method for nuclear and magnetic structures
journal, June 1969


GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


SoftBV – a software tool for screening the materials genome of inorganic fast ion conductors
journal, January 2019

  • Chen, Haomin; Wong, Lee Loong; Adams, Stefan
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 75, Issue 1
  • DOI: 10.1107/S2052520618015718

Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries
journal, December 2017

  • Dawson, James A.; Canepa, Pieremanuele; Famprikis, Theodosios
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b10593

Peeking across Grain Boundaries in a Solid-State Ionic Conductor
journal, April 2019


Study of the 2Cu2S + GeSe2 ↔ 2Cu2Se + GeS2 reciprocal system and thermodynamic properties of the Cu8GeS6−xSex solid solutions
journal, January 2017


Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li 6 PS 5 Cl–Li 2 S All-Solid-State Li-Ion Battery
journal, August 2016

  • Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J. J.
  • Journal of the American Chemical Society, Vol. 138, Issue 35
  • DOI: 10.1021/jacs.6b05066

Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface
journal, September 2018

  • Gao, Yue; Wang, Daiwei; Li, Yuguang C.
  • Angewandte Chemie International Edition, Vol. 57, Issue 41
  • DOI: 10.1002/anie.201807304

Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li 10 GeP 2 S 12 at the Lithium Metal Anode
journal, March 2016


Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells
journal, July 2019

  • Kasemchainan, Jitti; Zekoll, Stefanie; Spencer Jolly, Dominic
  • Nature Materials, Vol. 18, Issue 10
  • DOI: 10.1038/s41563-019-0438-9

Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes
journal, August 2019


Origin of fast ion diffusion in super-ionic conductors
journal, June 2017

  • He, Xingfeng; Zhu, Yizhou; Mo, Yifei
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15893

Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

An Entropically Stabilized Fast-Ion Conductor: Li 3.25 [Si 0.25 P 0.75 ]S 4
journal, September 2019


Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?
journal, April 2017

  • Düvel, Andre; Heitjans, Paul; Fedorov, Pavel
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b00502

Structural, Chemical, and Dynamical Frustration: Origins of Superionic Conductivity in closo -Borate Solid Electrolytes
journal, October 2017


Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li 4 SiO 4 –Li 3 PO 4 Solid Electrolytes
journal, July 2015

  • Deng, Yue; Eames, Christopher; Chotard, Jean-Noël
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b04444

A bird's-eye view of Li-stuffed garnet-type Li 7 La 3 Zr 2 O 12 ceramic electrolytes for advanced all-solid-state Li batteries
journal, January 2019

  • Samson, Alfred Junio; Hofstetter, Kyle; Bag, Sourav
  • Energy & Environmental Science, Vol. 12, Issue 10
  • DOI: 10.1039/C9EE01548E

Crystal Structural Framework of Lithium Super‐Ionic Conductors
journal, October 2019

  • He, Xingfeng; Bai, Qiang; Liu, Yunsheng
  • Advanced Energy Materials, Vol. 9, Issue 43
  • DOI: 10.1002/aenm.201902078

    Works referencing / citing this record:

    Ionic conduction mechanism of a lithium superionic argyrodite in the Li–Al–Si–S–O system
    journal, January 2020


    Fast Lithium Ion Conduction in Lithium Phosphidoaluminates
    journal, January 2020

    • Restle, Tassilo M. F.; Sedlmeier, Christian; Kirchhain, Holger
    • Angewandte Chemie, Vol. 132, Issue 14
    • DOI: 10.1002/ange.201914613