skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1606741
Alternate Identifier(s):
OSTI ID: 1634117
Grant/Contract Number:  
AC05-00OR22725; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 152; Journal Issue: 8; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Chemical processes; Half-cell; X-ray reflectivity; Interphases; Batteries; Thin films; Electrochemical analysis; Power electronics; Electrolytes

Citation Formats

Steinrück, Hans-Georg, Cao, Chuntian, Veith, Gabriel M., and Toney, Michael F. Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries. United States: N. p., 2020. Web. doi:10.1063/1.5142643.
Steinrück, Hans-Georg, Cao, Chuntian, Veith, Gabriel M., & Toney, Michael F. Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries. United States. doi:https://doi.org/10.1063/1.5142643
Steinrück, Hans-Georg, Cao, Chuntian, Veith, Gabriel M., and Toney, Michael F. Fri . "Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries". United States. doi:https://doi.org/10.1063/1.5142643. https://www.osti.gov/servlets/purl/1606741.
@article{osti_1606741,
title = {Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries},
author = {Steinrück, Hans-Georg and Cao, Chuntian and Veith, Gabriel M. and Toney, Michael F.},
abstractNote = {},
doi = {10.1063/1.5142643},
journal = {Journal of Chemical Physics},
number = 8,
volume = 152,
place = {United States},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In Situ Neutron Reflectometry Study of Solid Electrolyte Interface (SEI) Formation on Tungsten Thin-Film Electrodes
journal, November 2019

  • Rus, Eric D.; Dura, Joseph A.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 50
  • DOI: 10.1021/acsami.9b16592

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si
journal, January 2007

  • Li, Jing; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2409862

Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure
journal, November 2017


Volume Expansion during Lithiation of Amorphous Silicon Thin Film Electrodes Studied by In-Operando Neutron Reflectometry
journal, April 2014

  • Jerliu, B.; Hüger, E.; Dörrer, L.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 18
  • DOI: 10.1021/jp502261t

In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions - A Sum Frequency Generation Vibrational Spectroscopy Study
journal, January 2016

  • Horowitz, Yonatan; Han, Hui-Ling; Ross, Philip N.
  • Journal of the American Chemical Society, Vol. 138, Issue 3
  • DOI: 10.1021/jacs.5b10333

Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries
journal, August 2015

  • Young, Benjamin T.; Heskett, David R.; Nguyen, Cao Cuong
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 36
  • DOI: 10.1021/acsami.5b04845

Enhanced Lithiation of Doped 6H Silicon Carbide (0001) via High Temperature Vacuum Growth of Epitaxial Graphene
journal, September 2012

  • Lipson, Albert L.; Chattopadhyay, Sudeshna; Karmel, Hunter J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 39
  • DOI: 10.1021/jp307220y

Investigations of Si Thin Films as Anode of Lithium-Ion Batteries
journal, January 2018

  • Wu, Qingliu; Shi, Bing; Bareño, Javier
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 4
  • DOI: 10.1021/acsami.7b13980

On the Lithiation Mechanism of Amorphous Silicon Electrodes in Li-Ion Batteries
journal, August 2019

  • Uxa, Daniel; Jerliu, Bujar; Hüger, Erwin
  • The Journal of Physical Chemistry C, Vol. 123, Issue 36
  • DOI: 10.1021/acs.jpcc.9b06011

Pore collapse and regrowth in silicon electrodes for rechargeable batteries
journal, January 2015

  • DeCaluwe, S. C.; Dhar, B. M.; Huang, L.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 17
  • DOI: 10.1039/c4cp06017b

Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries
journal, August 2019


Ultra High Precision Study on High Capacity Cells for Large Scale Automotive Application
journal, January 2013

  • Harlow, J. E.; Stevens, D. A.; Burns, J. C.
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.096311jes

Understanding Anomalous Behavior in Coulombic Efficiency Measurements on Li-Ion Batteries
journal, December 2014

  • Gyenes, Balazs; Stevens, D. A.; Chevrier, V. L.
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0191503jes

Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study
journal, June 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja403082s

Silicon based lithium-ion battery anodes: A chronicle perspective review
journal, January 2017


Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011

  • Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3047

Identifying the components of the solid–electrolyte interphase in Li-ion batteries
journal, August 2019


An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries
journal, January 2014

  • Radvanyi, Etienne; De Vito, Eric; Porcher, Willy
  • J. Anal. At. Spectrom., Vol. 29, Issue 6
  • DOI: 10.1039/c3ja50362c

Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured In situ by Neutron Reflectometry
journal, May 2012

  • Owejan, Jeanette E.; Owejan, Jon P.; DeCaluwe, Steven C.
  • Chemistry of Materials, Vol. 24, Issue 11
  • DOI: 10.1021/cm3006887

Reversible Li-Ion Conversion Reaction for a Ti x Ge Alloy in a Ti/Ge Multilayer
journal, February 2017

  • Chen, Xiao; Fister, Tim T.; Esbenshade, Jennifer
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 9
  • DOI: 10.1021/acsami.6b14783

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Temperature-Dependent Solubility of Solid Electrolyte Interphase on Silicon Electrodes
journal, October 2019


Lithium-ion battery fast charging: A review
journal, August 2019


Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode
journal, August 2015

  • Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. Kevin
  • The Journal of Physical Chemistry C, Vol. 119, Issue 35
  • DOI: 10.1021/acs.jpcc.5b06817

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries
journal, March 2020


First Principles Model of Amorphous Silicon Lithiation
journal, January 2009

  • Chevrier, V. L.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3111037

The nanoscale structure of the electrolyte–metal oxide interface
journal, January 2018

  • Steinrück, Hans-Georg; Cao, Chuntian; Tsao, Yuchi
  • Energy & Environmental Science, Vol. 11, Issue 3
  • DOI: 10.1039/c7ee02724a

Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive
journal, July 2017


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Understanding the Role of Overpotentials in Lithium Ion Conversion Reactions: Visualizing the Interface
journal, May 2019

  • Evmenenko, Guennadi; Warburton, Robert E.; Yildirim, Handan
  • ACS Nano, Vol. 13, Issue 7
  • DOI: 10.1021/acsnano.9b02007

Analysis of x-ray reflectivity data from low-contrast polymer bilayer systems using a Fourier method
journal, May 2000

  • Seeck, O. H.; Kaendler, I. D.; Tolan, M.
  • Applied Physics Letters, Vol. 76, Issue 19
  • DOI: 10.1063/1.126452

Artificial Solid Electrolyte Interphase-Protected Li x Si Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries
journal, June 2015

  • Zhao, Jie; Lu, Zhenda; Wang, Haotian
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b04526

Extreme Fast Charge Challenges for Lithium-Ion Battery: Variability and Positive Electrode Issues
journal, January 2019

  • Tanim, Tanvir R.; Dufek, Eric J.; Evans, Michael
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0731910jes

Strain-Driven Mn-Reorganization in Overlithiated Li x Mn 2 O 4 Epitaxial Thin-Film Electrodes
journal, May 2018

  • Chen, Xiao; Vörös, Márton; Garcia, Juan C.
  • ACS Applied Energy Materials, Vol. 1, Issue 6
  • DOI: 10.1021/acsaem.8b00270

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter
journal, January 2016

  • Ashuri, Maziar; He, Qianran; Shaw, Leon L.
  • Nanoscale, Vol. 8, Issue 1
  • DOI: 10.1039/c5nr05116a

Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials
journal, January 2019


Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase
journal, September 2012

  • Shi, Siqi; Lu, Peng; Liu, Zhongyi
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja305366r

Ordering of diblock PS-PBMA thin films: An X-ray reflectivity study
journal, June 1998


Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception
journal, January 2018

  • Peljo, Pekka; Girault, Hubert H.
  • Energy & Environmental Science, Vol. 11, Issue 9
  • DOI: 10.1039/c8ee01286e

Si anode for next-generation lithium-ion battery
journal, December 2019


Real-Time Measurement of Stress and Damage Evolution during Initial Lithiation of Crystalline Silicon
journal, July 2011


Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
journal, January 2007


In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity
journal, November 2016


In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
journal, January 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Harris, Justin T.
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl3044508

Reaction of Li with Alloy Thin Films Studied by In Situ AFM
journal, January 2003

  • Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1613668

Engineering Interfacial Silicon Dioxide for Improved Metal–Insulator–Semiconductor Silicon Photoanode Water Splitting Performance
journal, May 2016

  • Satterthwaite, Peter F.; Scheuermann, Andrew G.; Hurley, Paul K.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 20
  • DOI: 10.1021/acsami.6b03029

Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method
journal, March 2016


Defect Thermodynamics and Diffusion Mechanisms in Li 2 CO 3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries
journal, March 2013

  • Shi, Siqi; Qi, Yue; Li, Hong
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp310591u

The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon
journal, September 2017

  • Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri
  • Advanced Materials Interfaces, Vol. 4, Issue 22
  • DOI: 10.1002/admi.201700771

Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-Ion Batteries
journal, March 2019


Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries
journal, November 2014

  • Schroder, Kjell W.; Dylla, Anthony G.; Harris, Stephen J.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 23
  • DOI: 10.1021/am506517j

Identifying the Mechanism of Continued Growth of the Solid–Electrolyte Interphase
journal, March 2018


Interpreting High Precision Coulometry Results on Li-ion Cells
journal, January 2011

  • Smith, A. J.; Burns, J. C.; Xiong, D.
  • Journal of The Electrochemical Society, Vol. 158, Issue 10
  • DOI: 10.1149/1.3625232

Highly Reversible Lithium Storage in Nanostructured Silicon
journal, January 2003

  • Graetz, J.; Ahn, C. C.; Yazami, R.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 9
  • DOI: 10.1149/1.1596917

Effect of Graphite Particle Size on Irreversible Capacity Loss
journal, January 2000

  • Zaghib, Karim; Nadeau, Gabrielle; Kinoshita, Kimio
  • Journal of The Electrochemical Society, Vol. 147, Issue 6
  • DOI: 10.1149/1.1393493

The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Iterative reconstruction of a refractive-index profile from x-ray or neutron reflectivity measurements
journal, May 2008


Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes
journal, January 2015

  • Chen, Chien-Fan; Mukherjee, Partha P.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 15
  • DOI: 10.1039/c4cp05758a

Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry
journal, January 2016

  • Fears, T. M.; Doucet, M.; Browning, J. F.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 20
  • DOI: 10.1039/c6cp00978f

Dynamics and morphology of solid electrolyte interphase (SEI)
journal, January 2016

  • Single, Fabian; Horstmann, Birger; Latz, Arnulf
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 27
  • DOI: 10.1039/c6cp02816k

X-ray micro-tomography as a diagnostic tool for the electrode degradation in vanadium redox flow batteries
journal, November 2014

  • Trogadas, Panagiotis; Taiwo, Oluwadamilola O.; Tjaden, Bernhard
  • Electrochemistry Communications, Vol. 48
  • DOI: 10.1016/j.elecom.2014.09.010

In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes
journal, May 2012

  • Misra, Sumohan; Liu, Nian; Nelson, Johanna
  • ACS Nano, Vol. 6, Issue 6
  • DOI: 10.1021/nn301339g

Role of conductive binder to direct solid–electrolyte interphase formation over silicon anodes
journal, January 2019

  • Browning, Katie L.; Browning, James F.; Doucet, Mathieu
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 31
  • DOI: 10.1039/c9cp02610j

The oxidation of metals
journal, February 1974


Alternating Silicon and Carbon Multilayer-Structured Anodes Suppress Formation of the c-Li 3.75 Si Phase
journal, December 2018


Ionic conductivity of LiF thin films containing Di- or trivalent metal fluorides
journal, April 1984


Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries
journal, October 2012


Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Molecular Dynamics Simulations and Experimental Study of Lithium Ion Transport in Dilithium Ethylene Dicarbonate
journal, April 2013

  • Borodin, Oleg; Zhuang, Guorong V.; Ross, Philip N.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 15
  • DOI: 10.1021/jp4000494