DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of ZnO-Saturated Electrolyte on Rechargeable Alkaline Zinc Batteries at Increased Depth-of-Discharge

Abstract

Rechargeable alkaline batteries containing zinc anodes suffer from redistribution of active material due to the high solubility of ZnO in the electrolyte, limiting achievable capacity and lifetime. Here, we investigate pre-saturating the KOH electrolyte with ZnO as a strategy to mitigate this issue, utilizing rechargeable Ni–Zn cells. In contrast to previous reports featuring this approach, we use more practical limited-electrolyte cells and systematically study ZnO saturation at different levels of zinc depth-of-discharge (DODZn), where the pre-dissolved ZnO is included in the total system capacity. Starting with 32 wt. % KOH, cells tested at 14%, 21%, and 35% DODZn with ZnO-saturated electrolyte exhibit 191%, 235%, and 110% longer cycle life respectively over identically tested cells with ZnO-free electrolyte, with similar energy efficiency and no voltage-related energy losses. Furthermore, anodes cycled in ZnO-saturated electrolyte develop more favorable compact zinc deposits with less overall mass loss. The effect of initial KOH concentration was also studied, with ZnO saturation enhancing cycle life for 32 wt % and 45 wt % KOH but not for 25 wt % KOH, likely due to cell failure by passivation rather than shorting. The simplicity of ZnO addition and its beneficial effect at high zinc utilization make it amore » promising means to make secondary alkaline zinc batteries more commercially viable.« less

Authors:
ORCiD logo; ORCiD logo;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Electricity (OE)
OSTI Identifier:
1606464
Alternate Identifier(s):
OSTI ID: 1639061
Report Number(s):
SAND2020-6342J
Journal ID: ISSN 1945-7111
Grant/Contract Number:  
NA0003525; AC04-94AL85000
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society (Online)
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society (Online) Journal Volume: 167 Journal Issue: 6; Journal ID: ISSN 1945-7111
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Lim, Matthew B., Lambert, Timothy N., and Ruiz, Elijah I. Effect of ZnO-Saturated Electrolyte on Rechargeable Alkaline Zinc Batteries at Increased Depth-of-Discharge. United States: N. p., 2020. Web. doi:10.1149/1945-7111/ab7e90.
Lim, Matthew B., Lambert, Timothy N., & Ruiz, Elijah I. Effect of ZnO-Saturated Electrolyte on Rechargeable Alkaline Zinc Batteries at Increased Depth-of-Discharge. United States. https://doi.org/10.1149/1945-7111/ab7e90
Lim, Matthew B., Lambert, Timothy N., and Ruiz, Elijah I. Wed . "Effect of ZnO-Saturated Electrolyte on Rechargeable Alkaline Zinc Batteries at Increased Depth-of-Discharge". United States. https://doi.org/10.1149/1945-7111/ab7e90.
@article{osti_1606464,
title = {Effect of ZnO-Saturated Electrolyte on Rechargeable Alkaline Zinc Batteries at Increased Depth-of-Discharge},
author = {Lim, Matthew B. and Lambert, Timothy N. and Ruiz, Elijah I.},
abstractNote = {Rechargeable alkaline batteries containing zinc anodes suffer from redistribution of active material due to the high solubility of ZnO in the electrolyte, limiting achievable capacity and lifetime. Here, we investigate pre-saturating the KOH electrolyte with ZnO as a strategy to mitigate this issue, utilizing rechargeable Ni–Zn cells. In contrast to previous reports featuring this approach, we use more practical limited-electrolyte cells and systematically study ZnO saturation at different levels of zinc depth-of-discharge (DODZn), where the pre-dissolved ZnO is included in the total system capacity. Starting with 32 wt. % KOH, cells tested at 14%, 21%, and 35% DODZn with ZnO-saturated electrolyte exhibit 191%, 235%, and 110% longer cycle life respectively over identically tested cells with ZnO-free electrolyte, with similar energy efficiency and no voltage-related energy losses. Furthermore, anodes cycled in ZnO-saturated electrolyte develop more favorable compact zinc deposits with less overall mass loss. The effect of initial KOH concentration was also studied, with ZnO saturation enhancing cycle life for 32 wt % and 45 wt % KOH but not for 25 wt % KOH, likely due to cell failure by passivation rather than shorting. The simplicity of ZnO addition and its beneficial effect at high zinc utilization make it a promising means to make secondary alkaline zinc batteries more commercially viable.},
doi = {10.1149/1945-7111/ab7e90},
journal = {Journal of the Electrochemical Society (Online)},
number = 6,
volume = 167,
place = {United States},
year = {Wed Jan 01 00:00:00 EST 2020},
month = {Wed Jan 01 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1149/1945-7111/ab7e90

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Manganese Dioxide Electrode in Alkaline Electrolyte; The Electron-Proton Mechanism for the Discharge Process from MnO[sub 2] to MnO[sub 1.5]
journal, January 1966

  • Kozawa, A.; Powers, R. A.
  • Journal of The Electrochemical Society, Vol. 113, Issue 9
  • DOI: 10.1149/1.2424145

Rechargeability and economic aspects of alkaline zinc–manganese dioxide cells for electrical storage and load leveling
journal, February 2015


Analysis of EIS Technique and Nafion 117 Conductivity as a Function of Temperature and Relative Humidity
journal, January 2012

  • Yadav, Rameshwar; Fedkiw, Peter S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.104203jes

Conductivity of KOH and KOH-ZnO Electrolytes from 36° to −6°C
journal, January 1967

  • Baker, Charles T.; Trachtenberg, Isaac
  • Journal of The Electrochemical Society, Vol. 114, Issue 10
  • DOI: 10.1149/1.2424183

Evaluation of a ceramic separator for use in rechargeable alkaline Zn/MnO2 batteries
journal, August 2018


Zinc Electrode Shape Change in Secondary Cells
journal, January 1972

  • McBreen, James
  • Journal of The Electrochemical Society, Vol. 119, Issue 12
  • DOI: 10.1149/1.2404060

The Corrosion of Zinc in KOH Solutions
journal, January 1969

  • Dirkse, T. P.; Timmer, R.
  • Journal of The Electrochemical Society, Vol. 116, Issue 2
  • DOI: 10.1149/1.2411786

Concentrated potassium zincate solutions studied using laser Raman spectroscopy and potentiometry
journal, January 1974

  • Briggs, A. Gordon; Hampson, Noel A.; Marshall, Alan
  • Journal of the Chemical Society, Faraday Transactions 2, Vol. 70
  • DOI: 10.1039/f29747001978

Effect of Multiple Cation Electrolyte Mixtures on Rechargeable Zn–MnO 2 Alkaline Battery
journal, June 2016


Systematic cycle life assessment of a secondary zinc-air battery as a function of the alkaline electrolyte composition
journal, May 2018

  • Mainar, Aroa R.; Iruin, Elena; Colmenares, Luis C.
  • Energy Science & Engineering, Vol. 6, Issue 3
  • DOI: 10.1002/ese3.191

A Study of Pyrite/Solution Interface by Impedance Spectroscopy
journal, January 1990

  • Pang, J.
  • Journal of The Electrochemical Society, Vol. 137, Issue 11
  • DOI: 10.1149/1.2086249

Minimizing Shape Change at Zn Sponge Anodes in Rechargeable Ni–Zn Cells: Impact of Electrolyte Formulation
journal, December 2015

  • Parker, Joseph F.; Pala, Irina R.; Chervin, Christopher N.
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.1001602jes

Morphology control of zinc regeneration for zinc–air fuel cell and battery
journal, December 2014


Engineering Analysis of Shape Change in Zinc Secondary Electrodes
journal, January 1976

  • Choi, King Wai
  • Journal of The Electrochemical Society, Vol. 123, Issue 11
  • DOI: 10.1149/1.2132657

A calcium hydroxide interlayer as a selective separator for rechargeable alkaline Zn/MnO2 batteries
journal, August 2017


Physical-Chemical Studies of KOH-ZnO Electrolytes
journal, January 1968

  • Dyson, W. H.; Schreier, L. A.; Sholette, W. P.
  • Journal of The Electrochemical Society, Vol. 115, Issue 6
  • DOI: 10.1149/1.2411337

The electrochemistry of β-MnO2 and γ-MnO2 in alkaline electrolyte
journal, March 1975


Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage
journal, May 2017


Effects of Deposition Conditions on the Morphology of Zinc Deposits from Alkaline Zincate Solutions
journal, January 2006

  • Wang, R. Y.; Kirk, D. W.; Zhang, G. X.
  • Journal of The Electrochemical Society, Vol. 153, Issue 5
  • DOI: 10.1149/1.2186037

Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview: Challenges of aqueous alkaline electrolytes for zinc air batteries
journal, February 2016

  • R. Mainar, Aroa; Leonet, Olatz; Bengoechea, Miguel
  • International Journal of Energy Research, Vol. 40, Issue 8
  • DOI: 10.1002/er.3499

Accessing the second electron capacity of MnO2 by exploring complexation and intercalation reactions in energy dense alkaline batteries
journal, April 2018


The current distribution and shape change of zinc electrodes in secondary silver-zinc cells
journal, November 1978

  • Poa, S. -P.; Wu, C. H.
  • Journal of Applied Electrochemistry, Vol. 8, Issue 6
  • DOI: 10.1007/BF00610794

Separators for nickel—zinc batteries
journal, February 1983


Development and testing of an economic grid-scale flow-assisted zinc/nickel-hydroxide alkaline battery
journal, October 2014


Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization
journal, September 2019


A Simple Coin Cell Design for Testing Rechargeable Zinc-Air or Alkaline Battery Systems
journal, January 2012

  • Bonnick, Patrick; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.023207jes

A quantitative study of shape change in zinc secondary electrodes
journal, September 1978

  • Poa, S. -P.; Wu, C. H.
  • Journal of Applied Electrochemistry, Vol. 8, Issue 5
  • DOI: 10.1007/BF00615838

Enhancement of electrochemical performance with Zn-Al-Bi layered hydrotalcites as anode material for Zn/Ni secondary battery
journal, February 2015


Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion
journal, April 2017

  • Parker, Joseph F.; Chervin, Christopher N.; Pala, Irina R.
  • Science, Vol. 356, Issue 6336
  • DOI: 10.1126/science.aak9991

Through-Plane Conductivities of Membranes for Nonaqueous Redox Flow Batteries
journal, January 2015

  • Hudak, Nicholas S.; Small, Leo J.; Pratt, Harry D.
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.0901510jes

The Alkaline Manganese Dioxide Electrode
journal, January 1967

  • Boden, David; Venuto, C. J.; Wisler, D.
  • Journal of The Electrochemical Society, Vol. 114, Issue 5
  • DOI: 10.1149/1.2426618

Operando identification of the point of [Mn2]O4 spinel formation during γ-MnO2 discharge within batteries
journal, July 2016


Intercalation and Conversion Reactions of Nanosized β-MnO 2 Cathode in the Secondary Zn/MnO 2 Alkaline Battery
journal, May 2018

  • Seo, Joon Kyo; Shin, JaeWook; Chung, Hyeseung
  • The Journal of Physical Chemistry C, Vol. 122, Issue 21
  • DOI: 10.1021/acs.jpcc.7b11685

One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials
journal, January 2011

  • Choi, Nam-Soon; Yao, Yan; Cui, Yi
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm03842c

The Corrosion of Zinc Anodes in Aqueous Alkaline Electrolytes
journal, January 1972

  • Gregory, D. P.; Jones, P. C.; Redfearn, D. P.
  • Journal of The Electrochemical Society, Vol. 119, Issue 10
  • DOI: 10.1149/1.2403980

Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle x-ray scattering
journal, June 1994


Morphology control of zinc electrodeposition by surfactant addition for alkaline-based rechargeable batteries
journal, January 2019

  • Shimizu, Masahiro; Hirahara, Koichi; Arai, Susumu
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 13
  • DOI: 10.1039/C9CP00223E

Impact of Triethanolamine as an Additive for Rechargeable Alkaline Zn/MnO 2 Batteries under Limited Depth of Discharge Conditions
journal, January 2017

  • Kelly, Maria; Duay, Jonathon; Lambert, Timothy N.
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0641714jes

Low-Zinc-Solubility Electrolytes for Use in Zinc/Nickel Oxide Cells
journal, January 1993

  • Adler, T. C.
  • Journal of The Electrochemical Society, Vol. 140, Issue 2
  • DOI: 10.1149/1.2221039

Zinc Electrode Shape Change
journal, January 1991

  • Einerhand, R. E. F.
  • Journal of The Electrochemical Society, Vol. 138, Issue 1
  • DOI: 10.1149/1.2085538

Investigations of a New Family of Alkaline−Fluoride−Carbonate Electrolytes for Zinc/Nickel Oxide Cells
journal, August 1998

  • Adler, T. C.; McLarnon, F. R.; Cairns, E. J.
  • Industrial & Engineering Chemistry Research, Vol. 37, Issue 8
  • DOI: 10.1021/ie9800694

Rechargeable Solid-State Copper Sulfide Cathodes for Alkaline Batteries: Importance of the Copper Valence State
journal, January 2019

  • Duay, Jonathon; Lambert, Timothy N.; Kelly, Maria
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.0261904jes

Eis study of heat-treated Al-Zn-Mg alloys in the passive and transpassive potential regions
journal, March 1995


A conversion-based highly energy dense Cu 2+ intercalated Bi-birnessite/Zn alkaline battery
journal, January 2017

  • Yadav, Gautam G.; Wei, Xia; Huang, Jinchao
  • Journal of Materials Chemistry A, Vol. 5, Issue 30
  • DOI: 10.1039/C7TA05347A

The Secondary Alkaline Zinc Electrode
journal, January 1991

  • McLarnon, Frank R.
  • Journal of The Electrochemical Society, Vol. 138, Issue 2
  • DOI: 10.1149/1.2085653

A review on mechanistic understanding of MnO 2 in aqueous electrolyte for electrical energy storage systems
journal, August 2019


Passivation of Zinc Anodes in Alkaline Electrolyte: Part I. Determination of the Starting Point of Passive Film Formation
journal, January 2018

  • Bockelmann, Marina; Becker, Maik; Reining, Laurens
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0331813jes

Hetaerolite Profiles in Alkaline Batteries Measured by High Energy EDXRD
journal, November 2014

  • Gallaway, Joshua W.; Menard, Melissa; Hertzberg, Benjamin
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.0811501jes

Pulse power tests on nickel oxide electrodes for nickel—zinc electric vehicle batteries
journal, August 1987


Zinc Electrode Shape Change
journal, January 1991

  • Einerhand, R. E. F.
  • Journal of The Electrochemical Society, Vol. 138, Issue 1
  • DOI: 10.1149/1.2085582

Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes
journal, November 2018


Rechargeable Zinc-Ion Battery Based on Choline Chloride-Urea Deep Eutectic Solvent
journal, January 2019

  • Kao-ian, Wathanyu; Pornprasertsuk, Rojana; Thamyongkit, Patchanita
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0641906jes

Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives
journal, November 2016

  • Fu, Jing; Cano, Zachary Paul; Park, Moon Gyu
  • Advanced Materials, Vol. 29, Issue 7
  • DOI: 10.1002/adma.201604685

Zinc Electrode Morphology Evolution in High Energy Density Nickel-Zinc Batteries
journal, January 2016


Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries
journal, March 2017

  • Yadav, Gautam G.; Gallaway, Joshua W.; Turney, Damon E.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14424

Effects of Sonication on EIS Results for Zinc Alkaline Batteries
journal, January 2013

  • Dornbusch, D. A.; Hilton, R.; Gordon, M. J.
  • ECS Electrochemistry Letters, Vol. 2, Issue 9
  • DOI: 10.1149/2.006309eel

Breaking the 2 V Barrier in Aqueous Zinc Chemistry: Creating 2.45 and 2.8 V MnO 2 –Zn Aqueous Batteries
journal, August 2019