DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97

Abstract

Activating pretreatments are used to tune surface composition and structure of bimetallic-alloy catalysts. Herein, the activation-induced changes in material properties of a nanoporous Ag0.03Au0.97 alloy and their subsequent evolution under steady-state CH3OH oxidation conditions are investigated. Activation using O3 results in AgO and Au2O3, strongly enriching the near-surface region in Ag. These oxides reduce in the O2/CH3OH mixture, yielding CO2 and producing a highly Ag-enriched surface alloy. At the reaction tem-perature (423 K), Ag realloys gradually with Au but remains enriched (stabilized by surface O) in the top few nanometers, producing methyl formate selectively without significant deactivation. At higher tem-peratures, bulk diffusion induces sintering and Ag redistribution, leading to a loss of activity. These find-ings demonstrate that material properties determining catalytic activity are dynamic and that metastable (kinetically trapped) forms of the material may be responsible for catalysis, providing guiding principles concerning the activation of heterogeneous catalysts for selective oxidation.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6]; ORCiD logo [1];  [3];  [7];  [8]; ORCiD logo [9];  [8];  [6];  [3];  [4];  [4];  [10]
  1. Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology
  2. Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  4. Harvard Univ., Cambridge, MA (United States). Paulson School of Engineering and Applied Sciences
  5. Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering
  6. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  8. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  9. Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering; Brookhaven National Lab. (BNL), Upton, NY (United States)
  10. Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology, Paulson School of Engineering and Applied Sciences
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC); Brookhaven National Laboratory (BNL), Upton, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1606185
Alternate Identifier(s):
OSTI ID: 1575804; OSTI ID: 1616393; OSTI ID: 1637299; OSTI ID: 1647451
Report Number(s):
BNL-213755-2020-JAAM; LLNL-JRNL-774771; LLNL-JRNL-777470
Journal ID: ISSN 0021-9517
Grant/Contract Number:  
SC0012704; AC52-07NA27344; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Catalysis
Additional Journal Information:
Journal Volume: 380; Journal Issue: C; Journal ID: ISSN 0021-9517
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; Nanoporous Au; Diluted alloys; Selective oxidation of CH3OH; In situ/operando multimodal approach; Metastability

Citation Formats

Zugic, Branko, van Spronsen, Matthijs A., Heine, Christian, Montemore, Matthew M., Li, Yuanyuan, Zakharov, Dmitri N., Karakalos, Stavros, Lechner, Barbara A. J., Crumlin, Ethan, Biener, Monika M., Frenkel, Anatoly I., Biener, Juergen, Stach, Eric A., Salmeron, Miquel B., Kaxiras, Efthimios, Madix, Robert J., and Friend, Cynthia M. Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97. United States: N. p., 2019. Web. doi:10.1016/j.jcat.2019.08.041.
Zugic, Branko, van Spronsen, Matthijs A., Heine, Christian, Montemore, Matthew M., Li, Yuanyuan, Zakharov, Dmitri N., Karakalos, Stavros, Lechner, Barbara A. J., Crumlin, Ethan, Biener, Monika M., Frenkel, Anatoly I., Biener, Juergen, Stach, Eric A., Salmeron, Miquel B., Kaxiras, Efthimios, Madix, Robert J., & Friend, Cynthia M. Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97. United States. https://doi.org/10.1016/j.jcat.2019.08.041
Zugic, Branko, van Spronsen, Matthijs A., Heine, Christian, Montemore, Matthew M., Li, Yuanyuan, Zakharov, Dmitri N., Karakalos, Stavros, Lechner, Barbara A. J., Crumlin, Ethan, Biener, Monika M., Frenkel, Anatoly I., Biener, Juergen, Stach, Eric A., Salmeron, Miquel B., Kaxiras, Efthimios, Madix, Robert J., and Friend, Cynthia M. Tue . "Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97". United States. https://doi.org/10.1016/j.jcat.2019.08.041. https://www.osti.gov/servlets/purl/1606185.
@article{osti_1606185,
title = {Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97},
author = {Zugic, Branko and van Spronsen, Matthijs A. and Heine, Christian and Montemore, Matthew M. and Li, Yuanyuan and Zakharov, Dmitri N. and Karakalos, Stavros and Lechner, Barbara A. J. and Crumlin, Ethan and Biener, Monika M. and Frenkel, Anatoly I. and Biener, Juergen and Stach, Eric A. and Salmeron, Miquel B. and Kaxiras, Efthimios and Madix, Robert J. and Friend, Cynthia M.},
abstractNote = {Activating pretreatments are used to tune surface composition and structure of bimetallic-alloy catalysts. Herein, the activation-induced changes in material properties of a nanoporous Ag0.03Au0.97 alloy and their subsequent evolution under steady-state CH3OH oxidation conditions are investigated. Activation using O3 results in AgO and Au2O3, strongly enriching the near-surface region in Ag. These oxides reduce in the O2/CH3OH mixture, yielding CO2 and producing a highly Ag-enriched surface alloy. At the reaction tem-perature (423 K), Ag realloys gradually with Au but remains enriched (stabilized by surface O) in the top few nanometers, producing methyl formate selectively without significant deactivation. At higher tem-peratures, bulk diffusion induces sintering and Ag redistribution, leading to a loss of activity. These find-ings demonstrate that material properties determining catalytic activity are dynamic and that metastable (kinetically trapped) forms of the material may be responsible for catalysis, providing guiding principles concerning the activation of heterogeneous catalysts for selective oxidation.},
doi = {10.1016/j.jcat.2019.08.041},
journal = {Journal of Catalysis},
number = C,
volume = 380,
place = {United States},
year = {Tue Oct 22 00:00:00 EDT 2019},
month = {Tue Oct 22 00:00:00 EDT 2019}
}

Journal Article:

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Restructuring and redistribution of Ag at the surface of free-standing np Ag0.03Au0.97 under steady-state conditions, related to the high selectivity for methyl formate (MF) production. Exposure of the as-prepared catalyst to O3 forms an oxide layer that is a few nanometers thick, with Ag concentrated in nanometer-scale patchesmore » on the surface. Under steady-state conditions, Ag redistributes into a silver-rich AgAu alloy that is kinetically confined to nanometer-scale regions near the surface. Dioxygen can be activated on these alloy regions, but requires multiple Ag atoms, based on DFT results. This work demonstrates the strong interplay between activation and kinetic trapping of a metastable state for steady-state catalytic function. The schematic is based on a combination of results from environmental transmission electron microscopy (E TEM), ambient-pressure X-ray photoelectron spectroscopy (AP XPS), and operando X-ray absorption fine-structure (XAFS) analysis. Color coding: Au matrix (dark yellow), Ag-rich regions (black speckles), AgAu oxide (pink), and AgAu alloy (dark purple).« less

Save / Share:

Works referenced in this record:

The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions
journal, August 2014

  • Herbschleb, C. T.; van der Tuijn, P. C.; Roobol, S. B.
  • Review of Scientific Instruments, Vol. 85, Issue 8
  • DOI: 10.1063/1.4891811

The ReactorAFM : Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions
journal, March 2015

  • Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.
  • Review of Scientific Instruments, Vol. 86, Issue 3
  • DOI: 10.1063/1.4916194

Atomic-scale electron microscopy at ambient pressure
journal, August 2008


Photoelectron spectroscopy under ambient pressure and temperature conditions
journal, March 2009

  • Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 601, Issue 1-2
  • DOI: 10.1016/j.nima.2008.12.155

The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts
journal, April 2012


Dynamic Structure of a Working Methanol Steam Reforming Catalyst: In Situ Quick-EXAFS on Pd/ZnO Nanoparticles
journal, February 2011

  • Föttinger, Karin; van Bokhoven, Jeroen A.; Nachtegaal, Maarten
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 5
  • DOI: 10.1021/jz101751s

Identifying Dynamic Structural Changes of Active Sites in Pt–Ni Bimetallic Catalysts Using Multimodal Approaches
journal, April 2018


Revealing the Atomic Restructuring of Pt–Co Nanoparticles
journal, May 2014

  • Xin, Huolin L.; Alayoglu, Selim; Tao, Runzhe
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500553a

Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts
journal, December 2016

  • Zugic, Branko; Wang, Lucun; Heine, Christian
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4824

Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation
journal, June 2015


New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2
journal, May 2010

  • Grass, Michael E.; Karlsson, Patrik G.; Aksoy, Funda
  • Review of Scientific Instruments, Vol. 81, Issue 5
  • DOI: 10.1063/1.3427218

A versatile sample-environment cell for non-ambient X-ray scattering experiments
journal, July 2008

  • Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles
  • Journal of Applied Crystallography, Vol. 41, Issue 4
  • DOI: 10.1107/S0021889808020165

IFEFFIT  : interactive XAFS analysis and FEFF fitting
journal, March 2001


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


AgO XPS Spectra
journal, April 1994

  • Hoflund, Gar B.; Weaver, Jason F.; Epling, William S.
  • Surface Science Spectra, Vol. 3, Issue 2
  • DOI: 10.1116/1.1247779

Surface characterization study of Ag, AgO, and Ag 2 O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy
journal, October 2000


Toward Controlled Modification of Nanoporous Gold. A Detailed Surface Science Study on Cleaning and Oxidation
journal, February 2012

  • Schaefer, A.; Ragazzon, D.; Wittstock, A.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 7
  • DOI: 10.1021/jp207638t

Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase
journal, December 2016


Ag/Au Mixed Sites Promote Oxidative Coupling of Methanol on the Alloy Surface
journal, March 2014

  • Xu, Bingjun; Siler, Cassandra G. F.; Madix, Robert J.
  • Chemistry - A European Journal, Vol. 20, Issue 16
  • DOI: 10.1002/chem.201304837

XPS: binding energy calibration of electron spectrometers 5?re-evaluation of the reference energies
journal, August 1998


A near ambient pressure XPS study of Au oxidation
journal, January 2014

  • Klyushin, Alexander Yu.; Rocha, Tulio C. R.; Hävecker, Michael
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 17
  • DOI: 10.1039/c4cp00308j

X-ray photoelectron spectroscopic binding energy shifts due to matrix in alloys and small supported metal particles
journal, January 1975


Self-activated surface dynamics in gold catalysts under reaction environments
journal, May 2018


Charge Flow and d Compensation in Gold Alloys
journal, December 1971


The creation of microscopic surface structures by interfacial diffusion of Au and Ag on Ag(110): A XPS and STM study
journal, January 2016


Hydrophilic Interaction Between Low-Coordinated Au and Water: H 2 O/Au(310) Studied with TPD and XPS
journal, April 2016

  • van Spronsen, Matthijs A.; Weststrate, Kees-Jan; den Dunnen, Angela
  • The Journal of Physical Chemistry C, Vol. 120, Issue 16
  • DOI: 10.1021/acs.jpcc.6b00912

A Comparison of CO Oxidation by Hydroxyl and Atomic Oxygen from Water on Low-Coordinated Au Atoms
journal, September 2016

  • van Spronsen, Matthijs A.; Weststrate, Kees-Jan; Juurlink, Ludo B. F.
  • ACS Catalysis, Vol. 6, Issue 10
  • DOI: 10.1021/acscatal.6b01720

Structure-dependent surface core level shifts for the Au(111), (100), and (110) surfaces
journal, May 1981


Surface core-level shifts at the end and beginning of the transition metal series
journal, March 1983


An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states
journal, January 2013

  • Kafizas, Andreas; A. Parry, Stephen; Chadwick, Alan V.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 21
  • DOI: 10.1039/c3cp44513e

Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts
journal, January 2012


Short range order in bimetallic nanoalloys: An extended X-ray absorption fine structure study
journal, February 2013

  • Frenkel, Anatoly I.; Wang, Qi; Sanchez, Sergio I.
  • The Journal of Chemical Physics, Vol. 138, Issue 6
  • DOI: 10.1063/1.4790509

Microstructure studies in nanoporous Au: Effects on electro-oxidation
journal, March 2018


Atomic origins of the high catalytic activity of nanoporous gold
journal, August 2012

  • Fujita, Takeshi; Guan, Pengfei; McKenna, Keith
  • Nature Materials, Vol. 11, Issue 9
  • DOI: 10.1038/nmat3391

Atomic Observation of Catalysis-Induced Nanopore Coarsening of Nanoporous Gold
journal, February 2014

  • Fujita, Takeshi; Tokunaga, Tomoharu; Zhang, Ling
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl403895s

How Does Nanoporous Gold Dissociate Molecular Oxygen?
journal, July 2016

  • Montemore, Matthew M.; Madix, Robert J.; Kaxiras, Efthimios
  • The Journal of Physical Chemistry C, Vol. 120, Issue 30
  • DOI: 10.1021/acs.jpcc.6b03371

On the theoretical understanding of the unexpected O 2 activation by nanoporous gold
journal, January 2011

  • Fajín, José L. C.; Cordeiro, M. Natália D. S.; Gomes, José R. B.
  • Chem. Commun., Vol. 47, Issue 29
  • DOI: 10.1039/C1CC12166A

Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold
journal, January 2011

  • Moskaleva, Lyudmila V.; Röhe, Sarah; Wittstock, Arne
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 10
  • DOI: 10.1039/c0cp02372h

Controlling O coverage and stability by alloying Au and Ag
journal, January 2016

  • Montemore, Matthew M.; Cubuk, Ekin D.; Klobas, J. Eric
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 38
  • DOI: 10.1039/C6CP05611C

First-principles investigations of the structure and stability of oxygen adsorption and surface oxide formation at Au(111)
journal, August 2007


Macroscopic 3D Nanoporosity Formation by Dry Oxidation of AgAu Alloys
journal, February 2017

  • Barroo, Cédric; Montemore, Matthew M.; Janvelyan, Nare
  • The Journal of Physical Chemistry C, Vol. 121, Issue 9
  • DOI: 10.1021/acs.jpcc.6b12847

The surface energy of metals
journal, August 1998


Correlating Catalytic Activity of Ag–Au Nanoparticles with 3D Compositional Variations
journal, March 2014

  • Slater, Thomas J. A.; Macedo, Alexandra; Schroeder, Sven L. M.
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl4047448

Oxygen-Driven Surface Evolution of Nanoporous Gold: Insights from Ab Initio Molecular Dynamics and Auger Electron Spectroscopy
journal, November 2017

  • Li, Yong; Dononelli, Wilke; Moreira, Raphaell
  • The Journal of Physical Chemistry C, Vol. 122, Issue 10
  • DOI: 10.1021/acs.jpcc.7b08873

Surface Segregation in Au–Ag Alloys Investigated by Atom Probe Tomography
journal, August 2018


The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen
journal, January 2011

  • Baker, Thomas A.; Liu, Xiaoying; Friend, Cynthia M.
  • Phys. Chem. Chem. Phys., Vol. 13, Issue 1
  • DOI: 10.1039/C0CP01514H

DFT study of the Au(321) surface reconstruction by consecutive deposition of oxygen atoms
journal, January 2008

  • Fajín, José L. C.; Cordeiro, M. Natália D. S.; Gomes, José R. B.
  • Surface Science, Vol. 602, Issue 2
  • DOI: 10.1016/j.susc.2007.10.037

Oxygen Adsorption and Low-Temperature CO Oxidation on a Nanoporous Au Catalyst: Reaction Mechanism and Foreign Metal Effects
journal, January 2018


Chemisorbed Oxygen on the Au(321) Surface Alloyed with Silver: A First-Principles Investigation
journal, April 2015

  • Moskaleva, Lyudmila V.; Weiss, Theodor; Klüner, Thorsten
  • The Journal of Physical Chemistry C, Vol. 119, Issue 17
  • DOI: 10.1021/jp511884k

Ag surface segregation in nanoporous Au catalysts during CO oxidation
journal, October 2018


On the Role of Residual Ag in Nanoporous Au Catalysts for CO Oxidation: A Combined Microreactor and TAP Reactor Study
journal, December 2011


Thermally and catalytically induced coarsening of nanoporous Au
journal, November 2016


New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid-Templated Silica
journal, November 2017

  • Shirman, Tanya; Lattimer, Judith; Luneau, Mathilde
  • Chemistry - A European Journal, Vol. 24, Issue 8
  • DOI: 10.1002/chem.201704552

X-ray photoelectron spectroscopic binding energy shifts due to matrix in alloys and small supported metal particles
journal, January 1975


Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation
journal, June 2015


A Comparison of CO Oxidation by Hydroxyl and Atomic Oxygen from Water on Low-Coordinated Au Atoms
journal, September 2016

  • van Spronsen, Matthijs A.; Weststrate, Kees-Jan; Juurlink, Ludo B. F.
  • ACS Catalysis, Vol. 6, Issue 10
  • DOI: 10.1021/acscatal.6b01720

An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states
journal, January 2013

  • Kafizas, Andreas; A. Parry, Stephen; Chadwick, Alan V.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 21
  • DOI: 10.1039/c3cp44513e

A near ambient pressure XPS study of Au oxidation
journal, January 2014

  • Klyushin, Alexander Yu.; Rocha, Tulio C. R.; Hävecker, Michael
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 17
  • DOI: 10.1039/c4cp00308j

Mechanism for reversed photoemission core-level shifts of oxidized Ag
journal, March 2012


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.