skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic structure of the parent compound of superconducting infinite-layer nickelates

Abstract

The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [2];  [3];  [3];  [2];  [2];  [2];  [2];  [4];  [4]; ORCiD logo [5];  [5];  [5]; ORCiD logo [2];  [6];  [6]; ORCiD logo [7];  [3] more »;  [2];  [2];  [8];  [2]; ORCiD logo [2] « less
  1. Max Planck Inst. for Solid State Research, Stuttgart (Germany); SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  3. Paul Scherrer Inst. (PSI), Villigen (Switzerland). Swiss Light Source
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  5. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Diamond Light Source, Ltd.
  6. National Synchrotron Radiation Research Center, Hsinchu (Taiwan)
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials
  8. Leiden Univ. (Netherlands)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; Gordon and Betty Moore Foundation; Swiss National Science Foundation (SNF); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1605376
Alternate Identifier(s):
OSTI ID: 1631643
Grant/Contract Number:  
AC02-76SF00515; GBMF4415; 51NF40_141828; CRSII2_160765/1; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 19; Journal Issue: 4; Related Information: A Publisher Correction to this article was published on 13 July 2020. DOI 10.1038/s41563-020-0761-1; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Materials science; Physics

Citation Formats

Hepting, M., Li, D., Jia, C. J., Lu, H., Paris, E., Tseng, Y., Feng, X., Osada, M., Been, E., Hikita, Y., Chuang, Y.-D., Hussain, Z., Zhou, K. J., Nag, A., Garcia-Fernandez, M., Rossi, M., Huang, H. Y., Huang, D. J., Shen, Z. X., Schmitt, T., Hwang, H. Y., Moritz, B., Zaanen, J., Devereaux, T. P., and Lee, W. S. Electronic structure of the parent compound of superconducting infinite-layer nickelates. United States: N. p., 2020. Web. doi:10.1038/s41563-019-0585-z.
Hepting, M., Li, D., Jia, C. J., Lu, H., Paris, E., Tseng, Y., Feng, X., Osada, M., Been, E., Hikita, Y., Chuang, Y.-D., Hussain, Z., Zhou, K. J., Nag, A., Garcia-Fernandez, M., Rossi, M., Huang, H. Y., Huang, D. J., Shen, Z. X., Schmitt, T., Hwang, H. Y., Moritz, B., Zaanen, J., Devereaux, T. P., & Lee, W. S. Electronic structure of the parent compound of superconducting infinite-layer nickelates. United States. doi:https://doi.org/10.1038/s41563-019-0585-z
Hepting, M., Li, D., Jia, C. J., Lu, H., Paris, E., Tseng, Y., Feng, X., Osada, M., Been, E., Hikita, Y., Chuang, Y.-D., Hussain, Z., Zhou, K. J., Nag, A., Garcia-Fernandez, M., Rossi, M., Huang, H. Y., Huang, D. J., Shen, Z. X., Schmitt, T., Hwang, H. Y., Moritz, B., Zaanen, J., Devereaux, T. P., and Lee, W. S. Mon . "Electronic structure of the parent compound of superconducting infinite-layer nickelates". United States. doi:https://doi.org/10.1038/s41563-019-0585-z. https://www.osti.gov/servlets/purl/1605376.
@article{osti_1605376,
title = {Electronic structure of the parent compound of superconducting infinite-layer nickelates},
author = {Hepting, M. and Li, D. and Jia, C. J. and Lu, H. and Paris, E. and Tseng, Y. and Feng, X. and Osada, M. and Been, E. and Hikita, Y. and Chuang, Y.-D. and Hussain, Z. and Zhou, K. J. and Nag, A. and Garcia-Fernandez, M. and Rossi, M. and Huang, H. Y. and Huang, D. J. and Shen, Z. X. and Schmitt, T. and Hwang, H. Y. and Moritz, B. and Zaanen, J. and Devereaux, T. P. and Lee, W. S.},
abstractNote = {The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.},
doi = {10.1038/s41563-019-0585-z},
journal = {Nature Materials},
number = 4,
volume = 19,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electronic structure of possible nickelate analogs to the cuprates
journal, March 1999


Reversible changes of epitaxial thin films from perovskite LaNiO3 to infinite-layer structure LaNiO2
journal, February 2009

  • Kawai, Masanori; Inoue, Satoru; Mizumaki, Masaichiro
  • Applied Physics Letters, Vol. 94, Issue 8
  • DOI: 10.1063/1.3078276

Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices
journal, May 2011


Non-Fermi-liquid behavior in d - and f -electron metals
journal, October 2001


Turning a Nickelate Fermi Surface into a Cupratelike One through Heterostructuring
journal, June 2009


Band gaps and electronic structure of transition-metal compounds
journal, July 1985


An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
journal, August 2014

  • Mostofi, Arash A.; Yates, Jonathan R.; Pizzi, Giovanni
  • Computer Physics Communications, Vol. 185, Issue 8
  • DOI: 10.1016/j.cpc.2014.05.003

Studies of copper valence states with Cu L 3 x-ray-absorption spectroscopy
journal, January 1989


Orbital Engineering in Symmetry-Breaking Polar Heterostructures
journal, January 2015


Systematics in band gaps and optical spectra of 3D transition metal compounds
journal, September 1990


Orbital Order and Possible Superconductivity in LaNiO 3 / LaMO 3 Superlattices
journal, January 2008


Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates
journal, July 2016


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition
journal, December 2013


Large orbital polarization in a metallic square-planar nickelate
journal, June 2017

  • Zhang, Junjie; Botana, A. S.; Freeland, J. W.
  • Nature Physics, Vol. 13, Issue 9
  • DOI: 10.1038/nphys4149

Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation:  Synthesis and Characterization of the Nickel(I) Oxide LaNiO 2
journal, September 1999

  • Hayward, M. A.; Green, M. A.; Rosseinsky, M. J.
  • Journal of the American Chemical Society, Vol. 121, Issue 38
  • DOI: 10.1021/ja991573i

Multiplet ligand-field theory using Wannier orbitals
journal, April 2012


Heavy-fermion intermetallic compounds
journal, March 1987


Superconductivity in an infinite-layer nickelate
journal, August 2019


Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991

  • Anisimov, Vladimir I.; Zaanen, Jan; Andersen, Ole K.
  • Physical Review B, Vol. 44, Issue 3, p. 943-954
  • DOI: 10.1103/PhysRevB.44.943

Infinite-layer La Ni O 2 :  Ni 1 + is not Cu 2 +
journal, October 2004


Superconductivity seen in a non-magnetic nickel oxide
journal, August 2019


Heavy-electron metals
journal, March 1986

  • Fisk, Z.; Ott, H. R.; Rice, T. M.
  • Nature, Vol. 320, Issue 6058
  • DOI: 10.1038/320124a0

High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies
journal, July 2010

  • Strocov, V. N.; Schmitt, T.; Flechsig, U.
  • Journal of Synchrotron Radiation, Vol. 17, Issue 5
  • DOI: 10.1107/S0909049510019862

Electron doped layered nickelates: Spanning the phase diagram of the cuprates
journal, July 2017


Character of Holes in Li x Ni 1 x O and Their Magnetic Behavior
journal, January 1989


Orbital reflectometry of oxide heterostructures
journal, February 2011

  • Benckiser, Eva; Haverkort, Maurits W.; Brück, Sebastian
  • Nature Materials, Vol. 10, Issue 3
  • DOI: 10.1038/nmat2958

Doping a Mott insulator: Physics of high-temperature superconductivity
journal, January 2006

  • Lee, Patrick A.; Nagaosa, Naoto; Wen, Xiao-Gang
  • Reviews of Modern Physics, Vol. 78, Issue 1
  • DOI: 10.1103/RevModPhys.78.17

LaNiO2: Synthesis and structural characterization
journal, April 2005


Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates
journal, October 2016

  • Bisogni, Valentina; Catalano, Sara; Green, Robert J.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13017

Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering
journal, February 2014

  • Jia, C. J.; Nowadnick, E. A.; Wohlfeld, K.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4314

Direct observation of infinite NiO 2 planes in LaNiO 2 films
journal, May 2016

  • Ikeda, Ai; Krockenberger, Yoshiharu; Irie, Hiroshi
  • Applied Physics Express, Vol. 9, Issue 6
  • DOI: 10.7567/APEX.9.061101

Electronic states in La 2 x Sr x CuO 4 + δ probed by soft-x-ray absorption
journal, January 1991


Discussion of the paper by de Boer and Verwey
journal, August 1937


Oxygen x-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides
journal, April 2008


Linear response approach to the calculation of the effective interaction parameters in the LDA + U method
journal, January 2005


    Works referencing / citing this record:

    Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate Nd 1 x Sr x NiO 2
    journal, February 2020


    Materials design of dynamically stable d 9 layered nickelates
    journal, February 2020


    Late transition metal oxides with infinite-layer structure: Nickelates versus cuprates
    journal, February 2020


    Effective Hamiltonian for nickelate oxides Nd 1 x Sr x NiO 2
    journal, February 2020


    Magnetic penetration depth and T c in superconducting nickelates
    journal, February 2020