DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamic re-equilibration controlled multi-step transformations in (Mn, Fe)2(P, Si) alloys

Abstract

In (Mn, Fe)2(P, Si) alloys crystallographic first-order phase transformations enable strong coupling of magnetic and entropic properties, potentially leading to high-efficiency energy generation and refrigeration applications. Although hysteresis losses that limit these applications can be reduced through careful control of alloy composition, compositional tuning can also unfavorably influence transformation temperatures and magnetocaloric coupling strength. Hence, exploration of additional processing variables enabling independent control of transformation properties is crucial. In this work, we investigate the role of thermal history as an additional processing variable, exploiting thermally-activated mechanisms to control properties of non-diffusive transformations in (Mn, Fe)2(P, Si) alloys. In so doing, we report an unusual transformation-splitting phenomenon following annealing at intermediate times, where a single well-defined magneto-structural transformation evolves towards a multi-step transformation with individual steps occurring at multiple distinct temperatures. Here, on longer annealing at the same temperatures, single-step transformation behavior is recovered. Through additional magnetic and crystallographic characterization, we show that the thermal history-controlled multi-step behavior results from sluggish thermally-activated diffusion. The two-step transformation corresponds to non-equilibrium bimodal composition distributions in the transforming phase, and these develop through a dynamic re-equilibration process as the alloy passes relatively slowly between different thermal equilibria. Together, these results suggest that thermal historymore » primarily controls the transformation properties of (Mn, Fe)2(P, Si) alloys indirectly through the composition of one or more transforming phases. Additional investigations are needed to develop thermal history processing for decoupling hysteresis control from other transformation properties.« less

Authors:
ORCiD logo [1];  [2];  [1];  [2]; ORCiD logo [1]
  1. Texas A & M Univ., College Station, TX (United States)
  2. Louisiana State Univ., Baton Rouge, LA (United States)
Publication Date:
Research Org.:
Louisiana State Univ., Baton Rouge, LA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation (CMMI) Program; NSF Graduate Research Fellowship Program
OSTI Identifier:
1872899
Alternate Identifier(s):
OSTI ID: 1605304
Grant/Contract Number:  
SC0010521; FG02-13ER46946
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. D, Applied Physics
Additional Journal Information:
Journal Volume: 53; Journal Issue: 20; Journal ID: ISSN 0022-3727
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; magnetocaloric effect; phase transitions; thermal hysteresis; solid state phase transformation

Citation Formats

Brown, T. D., Chen, J-H, Braham, E. J., Stadler, S., and Shamberger, Patrick J. Dynamic re-equilibration controlled multi-step transformations in (Mn, Fe)2(P, Si) alloys. United States: N. p., 2020. Web. doi:10.1088/1361-6463/ab768a.
Brown, T. D., Chen, J-H, Braham, E. J., Stadler, S., & Shamberger, Patrick J. Dynamic re-equilibration controlled multi-step transformations in (Mn, Fe)2(P, Si) alloys. United States. https://doi.org/10.1088/1361-6463/ab768a
Brown, T. D., Chen, J-H, Braham, E. J., Stadler, S., and Shamberger, Patrick J. Wed . "Dynamic re-equilibration controlled multi-step transformations in (Mn, Fe)2(P, Si) alloys". United States. https://doi.org/10.1088/1361-6463/ab768a. https://www.osti.gov/servlets/purl/1872899.
@article{osti_1872899,
title = {Dynamic re-equilibration controlled multi-step transformations in (Mn, Fe)2(P, Si) alloys},
author = {Brown, T. D. and Chen, J-H and Braham, E. J. and Stadler, S. and Shamberger, Patrick J.},
abstractNote = {In (Mn, Fe)2(P, Si) alloys crystallographic first-order phase transformations enable strong coupling of magnetic and entropic properties, potentially leading to high-efficiency energy generation and refrigeration applications. Although hysteresis losses that limit these applications can be reduced through careful control of alloy composition, compositional tuning can also unfavorably influence transformation temperatures and magnetocaloric coupling strength. Hence, exploration of additional processing variables enabling independent control of transformation properties is crucial. In this work, we investigate the role of thermal history as an additional processing variable, exploiting thermally-activated mechanisms to control properties of non-diffusive transformations in (Mn, Fe)2(P, Si) alloys. In so doing, we report an unusual transformation-splitting phenomenon following annealing at intermediate times, where a single well-defined magneto-structural transformation evolves towards a multi-step transformation with individual steps occurring at multiple distinct temperatures. Here, on longer annealing at the same temperatures, single-step transformation behavior is recovered. Through additional magnetic and crystallographic characterization, we show that the thermal history-controlled multi-step behavior results from sluggish thermally-activated diffusion. The two-step transformation corresponds to non-equilibrium bimodal composition distributions in the transforming phase, and these develop through a dynamic re-equilibration process as the alloy passes relatively slowly between different thermal equilibria. Together, these results suggest that thermal history primarily controls the transformation properties of (Mn, Fe)2(P, Si) alloys indirectly through the composition of one or more transforming phases. Additional investigations are needed to develop thermal history processing for decoupling hysteresis control from other transformation properties.},
doi = {10.1088/1361-6463/ab768a},
journal = {Journal of Physics. D, Applied Physics},
number = 20,
volume = 53,
place = {United States},
year = {Wed Mar 18 00:00:00 EDT 2020},
month = {Wed Mar 18 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of structural disorder on the magnetocaloric properties of Ni-Mn-Sn alloy
journal, January 2014

  • Ghosh, Arup; Mandal, Kalyan
  • Applied Physics Letters, Vol. 104, Issue 3
  • DOI: 10.1063/1.4862431

Reversible solid-state hydrogen-pump driven by magnetostructural transformation in the prototype system La(Fe,Si) 13 H y
journal, October 2012

  • Krautz, Maria; Moore, James D.; Skokov, Konstantin P.
  • Journal of Applied Physics, Vol. 112, Issue 8
  • DOI: 10.1063/1.4759438

Neutron diffraction study on the magnetic structure of Fe2P-based Mn0.66Fe1.29P1−xSix melt-spun ribbons
journal, August 2013


Giant magnetocaloric effect driven by structural transitions
journal, May 2012

  • Liu, Jian; Gottschall, Tino; Skokov, Konstantin P.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3334

Caloric materials near ferroic phase transitions
journal, April 2014

  • Moya, X.; Kar-Narayan, S.; Mathur, N. D.
  • Nature Materials, Vol. 13, Issue 5
  • DOI: 10.1038/nmat3951

Enhanced magnetic refrigeration properties in Mn-rich Ni-Mn-Sn ribbons by optimal annealing
journal, June 2015

  • Zhang, Yu; Zhang, Linlin; Zheng, Qiang
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11010

From first-order magneto-elastic to magneto-structural transition in (Mn,Fe) 1.95 P 0.50 Si 0.50 compounds
journal, August 2011

  • Dung, N. H.; Zhang, L.; Ou, Z. Q.
  • Applied Physics Letters, Vol. 99, Issue 9
  • DOI: 10.1063/1.3634016

Tunable thermal hysteresis in MnFe(P,Ge) compounds
journal, March 2009

  • Trung, N. T.; Ou, Z. Q.; Gortenmulder, T. J.
  • Applied Physics Letters, Vol. 94, Issue 10
  • DOI: 10.1063/1.3095597

Microstructure, magnetic and magnetocaloric properties of Fe2–x Mn x P0.4Si0.6 alloys
journal, November 2016


The effect of heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for magnetic refrigeration
journal, August 2014


Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6
journal, June 2001

  • Hu, Feng-xia; Shen, Bao-gen; Sun, Ji-rong
  • Applied Physics Letters, Vol. 78, Issue 23
  • DOI: 10.1063/1.1375836

Age splitting of the La(Fe 1−x Si x ) 13 Hy first order magnetocaloric transition and its thermal restoration
journal, May 2013

  • Zimm, Carl B.; Jacobs, Steven A.
  • Journal of Applied Physics, Vol. 113, Issue 17
  • DOI: 10.1063/1.4794976

Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni44.1Mn44.2Sn11.7 ribbons
journal, June 2008

  • Xuan, H. C.; Xie, K. X.; Wang, D. H.
  • Applied Physics Letters, Vol. 92, Issue 24
  • DOI: 10.1063/1.2948904

Direct measurement of the magnetocaloric effect in MnFe(P, X )( X = As, Ge, Si) materials
journal, January 2014


Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13−x Heusler alloys
journal, March 2007

  • Khan, Mahmud; Ali, Naushad; Stadler, Shane
  • Journal of Applied Physics, Vol. 101, Issue 5
  • DOI: 10.1063/1.2710779

Local Observation of the Site Occupancy of Mn in a MnFePSi Compound
journal, March 2015


Reduction of hysteresis loss in LaFe11.7Si1.3H x hydrides with significant magnetocaloric effects
journal, September 2011


Large magnetocaloric effects in NaZn 13 -type La(Fe x Si 1− x ) 13 compounds and their hydrides composed of icosahedral clusters
journal, January 2003

  • Fujieda, S.; Fujita, A.; Fukamichi, K.
  • Science and Technology of Advanced Materials, Vol. 4, Issue 4
  • DOI: 10.1016/j.stam.2003.07.002

Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys
journal, May 2009


The effect of different temperature annealing on phase relation of LaFe11.5Si1.5 and the magnetocaloric effects of La0.8Ce0.2Fe11.5−xCoxSi1.5 alloys
journal, December 2011

  • Chen, Xiang; Chen, Yungui; Tang, Yongbai
  • Journal of Magnetism and Magnetic Materials, Vol. 323, Issue 24
  • DOI: 10.1016/j.jmmm.2011.05.041

Effect of post-annealing on martensitic transformation and magnetocaloric effect in Ni 45 Co 5 Mn 36.7 In 13.3 alloys
journal, April 2011

  • Chen, L.; Hu, F. X.; Wang, J.
  • Journal of Applied Physics, Vol. 109, Issue 7
  • DOI: 10.1063/1.3565189

Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni–Mn–In–Co ribbons
journal, September 2009


Microstructural and magnetic properties of Mn-Fe-P-Si (Fe2 P-type) magnetocaloric compounds
journal, June 2017


Microstructure formation and magnetocaloric effect of the Fe2P-type phase in (Mn,Fe)2(P, Si, B) alloys
journal, February 2018


Mixed Magnetism for Refrigeration and Energy Conversion
journal, September 2011

  • Dung, Nguyen H.; Ou, Zhi Qiang; Caron, Luana
  • Advanced Energy Materials, Vol. 1, Issue 6
  • DOI: 10.1002/aenm.201100252

The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models
journal, August 2012


Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys
journal, May 2011


On tuning the magnetocaloric effect in Ni–Mn–In Heusler alloy ribbons with thermal treatment
journal, December 2012


Structure and magnetic properties of shortly high temperature annealing LaFe11.6Si1.4 compound
journal, May 2009


Alteration of negative lattice expansion of the La(Fe,Si)13-type phase in LaFe11.14−xCo0.66NixSi1.2 alloys
journal, January 2017


Tuning the magnetoelastic transition in (Mn,Fe)2(P,Si) by B, C, and N doping
journal, November 2016


Thermodynamic-state and kinetic-process dependent dual ferromagnetic states in high-Si content FeMn(PSi) alloys
journal, December 2015

  • Li, Guijiang; Eriksson, Olle; Johansson, Börje
  • Journal of Applied Physics, Vol. 118, Issue 21
  • DOI: 10.1063/1.4936835

Magnetoelastic coupling and magnetocaloric effect in hexagonal Mn–Fe–P–Si compounds
journal, December 2012


Order-disorder induced magnetic structures of FeMnP 0 . 75 Si 0 . 25
journal, April 2011


Effect of annealing on the magnetic, magnetocaloric and magnetoresistance properties of Ni-Co-Mn-Sb melt spun ribbons
journal, December 2013

  • Sahoo, Roshnee; Raj Kumar, D. M.; Arvindha Babu, D.
  • Journal of Magnetism and Magnetic Materials, Vol. 347
  • DOI: 10.1016/j.jmmm.2013.07.027

Rapid Microwave Preparation and Composition Tuning of the High-Performance Magnetocalorics (Mn,Fe) 2 (P,Si)
journal, February 2018

  • Grebenkemper, Jason H.; Bocarsly, Joshua D.; Levin, Emily E.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 8
  • DOI: 10.1021/acsami.7b16988

The crystal and magnetic structure of the magnetocaloric compound FeMnP0.5Si0.5
journal, September 2011

  • Höglin, Viktor; Hudl, Matthias; Sahlberg, Martin
  • Journal of Solid State Chemistry, Vol. 184, Issue 9
  • DOI: 10.1016/j.jssc.2011.06.019

Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys
journal, May 2005

  • Krenke, Thorsten; Duman, Eyüp; Acet, Mehmet
  • Nature Materials, Vol. 4, Issue 6
  • DOI: 10.1038/nmat1395

Magnetic and magnetocaloric properties in melt-spun and annealed Ni42.7Mn40.8Co5.2Sn11.3 ribbons
journal, January 2011


The high-temperature hydrogenation behavior of LaFe11.6Si1.4 and splitting of LaFe11.6Si1.4Hy magnetocaloric transition
journal, October 2015


Tuning the phase transition in transition-metal-based magnetocaloric compounds
journal, May 2014