skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Data-driven design of metal–organic frameworks for wet flue gas CO2 capture

Abstract

Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore,more » and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.« less

Authors:
 [1];  [1];  [2];  [1];  [3];  [4];  [1];  [5];  [1];  [2];  [4];  [6];  [3];  [2];  [1];  [1]
  1. École Polytechnique Fédérale de Lausanne (EPFL), Sion (Switzerland). Lab. of Molecular Simulation (LSMO), Inst. des Sciences et Ingénierie Chimiques, Valais (ISIC)
  2. Heriot-Watt Univ., Edinburgh (United Kingdom)
  3. Univ. of Ottawa, Ottawa, ON (Canada)
  4. Univ. of California, Berkeley, CA (United States)
  5. Ecole Polytechnique Federale Lausanne (Switzlerland). Inst. des Sciences et Ingénierie Chimiques (ISIC)
  6. Univ. de Granada, Granada (Spain)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); European Research Council (ERC); European Union (EU); Spanish Ministry of Economy and Competitiveness (MINECO); Office Fédéral de l'Energie (Switzerland)
OSTI Identifier:
1605262
Grant/Contract Number:  
AC02-05CH11231; SC0001015
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 576; Journal Issue: 7786; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Boyd, Peter G., Chidambaram, Arunraj, García-Díez, Enrique, Ireland, Christopher P., Daff, Thomas D., Bounds, Richard, Gładysiak, Andrzej, Schouwink, Pascal, Moosavi, Seyed Mohamad, Maroto-Valer, M. Mercedes, Reimer, Jeffrey A., Navarro, Jorge A. R., Woo, Tom K., Garcia, Susana, Stylianou, Kyriakos C., and Smit, Berend. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1798-7.
Boyd, Peter G., Chidambaram, Arunraj, García-Díez, Enrique, Ireland, Christopher P., Daff, Thomas D., Bounds, Richard, Gładysiak, Andrzej, Schouwink, Pascal, Moosavi, Seyed Mohamad, Maroto-Valer, M. Mercedes, Reimer, Jeffrey A., Navarro, Jorge A. R., Woo, Tom K., Garcia, Susana, Stylianou, Kyriakos C., & Smit, Berend. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. United States. doi:https://doi.org/10.1038/s41586-019-1798-7
Boyd, Peter G., Chidambaram, Arunraj, García-Díez, Enrique, Ireland, Christopher P., Daff, Thomas D., Bounds, Richard, Gładysiak, Andrzej, Schouwink, Pascal, Moosavi, Seyed Mohamad, Maroto-Valer, M. Mercedes, Reimer, Jeffrey A., Navarro, Jorge A. R., Woo, Tom K., Garcia, Susana, Stylianou, Kyriakos C., and Smit, Berend. Wed . "Data-driven design of metal–organic frameworks for wet flue gas CO2 capture". United States. doi:https://doi.org/10.1038/s41586-019-1798-7. https://www.osti.gov/servlets/purl/1605262.
@article{osti_1605262,
title = {Data-driven design of metal–organic frameworks for wet flue gas CO2 capture},
author = {Boyd, Peter G. and Chidambaram, Arunraj and García-Díez, Enrique and Ireland, Christopher P. and Daff, Thomas D. and Bounds, Richard and Gładysiak, Andrzej and Schouwink, Pascal and Moosavi, Seyed Mohamad and Maroto-Valer, M. Mercedes and Reimer, Jeffrey A. and Navarro, Jorge A. R. and Woo, Tom K. and Garcia, Susana and Stylianou, Kyriakos C. and Smit, Berend},
abstractNote = {Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.},
doi = {10.1038/s41586-019-1798-7},
journal = {Nature (London)},
number = 7786,
volume = 576,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reducing the Cost of CO 2 Capture from Flue Gases Using Pressure Swing Adsorption
journal, July 2008

  • Ho, Minh T.; Allinson, Guy W.; Wiley, Dianne E.
  • Industrial & Engineering Chemistry Research, Vol. 47, Issue 14
  • DOI: 10.1021/ie070831e

Crystallographic studies of gas sorption in metal–organic frameworks
journal, May 2014

  • Carrington, Elliot J.; Vitórica-Yrezábal, Iñigo J.; Brammer, Lee
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 70, Issue 3
  • DOI: 10.1107/S2052520614009834

In silico screening of carbon-capture materials
journal, May 2012

  • Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3336

An Amine-Functionalized MIL-53 Metal−Organic Framework with Large Separation Power for CO 2 and CH 4
journal, May 2009

  • Couck, Sarah; Denayer, Joeri F. M.; Baron, Gino V.
  • Journal of the American Chemical Society, Vol. 131, Issue 18
  • DOI: 10.1021/ja900555r

Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach
journal, December 2009

  • Yazaydın, A. Özgür; Snurr, Randall Q.; Park, Tae-Hong
  • Journal of the American Chemical Society, Vol. 131, Issue 51
  • DOI: 10.1021/ja9057234

Experimental Investigation on CO 2 Post−Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites
journal, January 2008

  • Merel, Jérôme; Clausse, Marc; Meunier, Francis
  • Industrial & Engineering Chemistry Research, Vol. 47, Issue 1
  • DOI: 10.1021/ie071012x

Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture
journal, July 2011


Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO 2 Capture from Flue Gas in Metal-Organic Frameworks
journal, March 2017

  • Chanut, Nicolas; Bourrelly, Sandrine; Kuchta, Bogdan
  • ChemSusChem, Vol. 10, Issue 7
  • DOI: 10.1002/cssc.201601816

A Guest-Responsive Fluorescent 3D Microporous Metal−Organic Framework Derived from a Long-Lifetime Pyrene Core
journal, March 2010

  • Stylianou, Kyriakos C.; Heck, Romain; Chong, Samantha Y.
  • Journal of the American Chemical Society, Vol. 132, Issue 12, p. 4119-4130
  • DOI: 10.1021/ja906041f

Carbon Dioxide Capture: Prospects for New Materials
journal, July 2010

  • D'Alessandro, Deanna M.; Smit, Berend; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 49, Issue 35, p. 6058-6082
  • DOI: 10.1002/anie.201000431

Cyclic operation of a fixed-bed pressure and temperature swing process for CO2 capture: Experimental and statistical analysis
journal, January 2013


A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration
journal, March 2004

  • Loiseau, Thierry; Serre, Christian; Huguenard, Clarisse
  • Chemistry - A European Journal, Vol. 10, Issue 6
  • DOI: 10.1002/chem.200305413

Computational development of the nanoporous materials genome
journal, July 2017


Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
journal, January 2011

  • Mason, Jarad A.; Sumida, Kenji; Herm, Zoey R.
  • Energy & Environmental Science, Vol. 4, Issue 8, p. 3030-3040
  • DOI: 10.1039/c1ee01720a

Molecule-pharmacophore superpositioning and pattern matching in computational drug design
journal, January 2008


Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X
journal, January 2008


Computational Methods in Drug Discovery
journal, December 2013

  • Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens
  • Pharmacological Reviews, Vol. 66, Issue 1
  • DOI: 10.1124/pr.112.007336

A Diaminopropane-Appended Metal–Organic Framework Enabling Efficient CO 2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism
journal, September 2017

  • Milner, Phillip J.; Siegelman, Rebecca L.; Forse, Alexander C.
  • Journal of the American Chemical Society, Vol. 139, Issue 38
  • DOI: 10.1021/jacs.7b07612

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks
journal, March 2015

  • McDonald, Thomas M.; Mason, Jarad A.; Kong, Xueqian
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14327

Large-scale screening of hypothetical metal–organic frameworks
journal, November 2011

  • Wilmer, Christopher E.; Leaf, Michael; Lee, Chang Yeon
  • Nature Chemistry, Vol. 4, Issue 2, p. 83-89
  • DOI: 10.1038/nchem.1192

The Chemistry of CO 2 Capture in an Amine-Functionalized Metal–Organic Framework under Dry and Humid Conditions
journal, August 2017

  • Flaig, Robinson W.; Osborn Popp, Thomas M.; Fracaroli, Alejandro M.
  • Journal of the American Chemical Society, Vol. 139, Issue 35
  • DOI: 10.1021/jacs.7b06382

A generalized method for constructing hypothetical nanoporous materials of any net topology from graph theory
journal, January 2016


High-throughput studies of highly porous Al-based MOFs
journal, May 2013


The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Carbon capture and storage (CCS): the way forward
journal, January 2018

  • Bui, Mai; Adjiman, Claire S.; Bardow, André
  • Energy & Environmental Science, Vol. 11, Issue 5
  • DOI: 10.1039/C7EE02342A

Evaluating different classes of porous materials for carbon capture
journal, January 2014

  • Huck, Johanna M.; Lin, Li-Chiang; Berger, Adam H.
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE02636E

Introduction to Carbon Capture and Sequestration
book, June 2013

  • Smit, Berend; Reimer, Jeffrey A.; Oldenburg, Curtis M.
  • The Berkeley Lectures on Energy
  • DOI: 10.1142/p911

A Water-Stable Porphyrin-Based Metal-Organic Framework Active for Visible-Light Photocatalysis
journal, June 2012

  • Fateeva, Alexandra; Chater, Philip A.; Ireland, Christopher P.
  • Angewandte Chemie International Edition, Vol. 51, Issue 30
  • DOI: 10.1002/anie.201202471

    Works referencing / citing this record:

    Three metal–organic framework isomers of different pore sizes for selective CO 2 adsorption and isomerization studies
    journal, January 2020


    Self-adjusting binding pockets enhance H 2 and CH 4 adsorption in a uranium-based metal–organic framework
    journal, January 2020

    • Halter, Dominik P.; Klein, Ryan A.; Boreen, Michael A.
    • Chemical Science
    • DOI: 10.1039/d0sc02394a

    Screening for selectivity
    journal, December 2019


    Large-Scale Screening and Machine Learning to Predict the Computation-Ready, Experimental Metal-Organic Frameworks for CO2 Capture from Air
    journal, January 2020

    • Deng, Xiaomei; Yang, Wenyuan; Li, Shuhua
    • Applied Sciences, Vol. 10, Issue 2
    • DOI: 10.3390/app10020569