skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on March 2, 2021

Title: High Compression‐Induced Conductivity in a Layered Cu–Br Perovskite

Abstract

We show that the onset pressure for appreciable conductivity in layered copper‐halide perovskites can decrease by ca. 50 GPa upon replacement of Cl with Br. Layered Cu–Cl perovskites require pressures >50 GPa to show a conductivity of 10−4 S cm−1, whereas here a Cu–Br congener, (EA)2CuBr4 (EA=ethylammonium), exhibits conductivity as high as 2×10−3 S cm−1 at only 2.6 GPa, and 0.17 S cm−1 at 59 GPa. Substitution of higher‐energy Br 4p for Cl 3p orbitals lowers the charge‐transfer band gap of the perovskite by 0.9 eV. This 1.7 eV band gap decreases to 0.3 eV at 65 GPa. High‐pressure X‐ray diffraction, optical absorption, and transport measurements, and density functional theory calculations allow us to track compression‐induced structural and electronic changes. The notable enhancement of the Br perovskite's electronic response to pressure may be attributed to more diffuse Br valence orbitals relative to Cl orbitals. This work brings the compression‐induced conductivity of Cu‐halide perovskites to more technologically accessible pressures.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5]; ORCiD logo [6]
  1. Department of ChemistryStanford University Stanford CA 94305 USA
  2. Department of PhysicsUniversity of California Berkeley Berkeley CA 94720 USA; Materials Sciences DivisionLawrence Berkeley National Laboratory Berkeley CA 94720 USA
  3. Stanford Institute for Materials and Energy SciencesSLAC National Accelerator Laboratory Menlo Park CA 94025 USA
  4. Stanford Institute for Materials and Energy SciencesSLAC National Accelerator Laboratory Menlo Park CA 94025 USA; Department of Geological SciencesStanford University Stanford CA 94305 USA
  5. Department of PhysicsUniversity of California Berkeley Berkeley CA 94720 USA; Materials Sciences DivisionLawrence Berkeley National Laboratory Berkeley CA 94720 USA; Kavli Energy NanoScience InstituteUniversity of California Berkeley Berkeley CA 94720 USA
  6. Department of ChemistryStanford University Stanford CA 94305 USA; Stanford Institute for Materials and Energy SciencesSLAC National Accelerator Laboratory Menlo Park CA 94025 USA
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1605180
Alternate Identifier(s):
OSTI ID: 1594191
Grant/Contract Number:  
[AC02-76SF00515; AC02-05CH11231]
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
[Journal Name: Angewandte Chemie (International Edition); Journal Volume: 59; Journal Issue: 10]; Journal ID: ISSN 1433-7851
Country of Publication:
United States
Language:
English

Citation Formats

Jaffe, Adam, Mack, Stephanie A., Lin, Yu, Mao, Wendy L., Neaton, Jeffrey B., and Karunadasa, Hemamala I. High Compression‐Induced Conductivity in a Layered Cu–Br Perovskite. United States: N. p., 2020. Web. doi:10.1002/anie.201912575.
Jaffe, Adam, Mack, Stephanie A., Lin, Yu, Mao, Wendy L., Neaton, Jeffrey B., & Karunadasa, Hemamala I. High Compression‐Induced Conductivity in a Layered Cu–Br Perovskite. United States. doi:10.1002/anie.201912575.
Jaffe, Adam, Mack, Stephanie A., Lin, Yu, Mao, Wendy L., Neaton, Jeffrey B., and Karunadasa, Hemamala I. Mon . "High Compression‐Induced Conductivity in a Layered Cu–Br Perovskite". United States. doi:10.1002/anie.201912575.
@article{osti_1605180,
title = {High Compression‐Induced Conductivity in a Layered Cu–Br Perovskite},
author = {Jaffe, Adam and Mack, Stephanie A. and Lin, Yu and Mao, Wendy L. and Neaton, Jeffrey B. and Karunadasa, Hemamala I.},
abstractNote = {We show that the onset pressure for appreciable conductivity in layered copper‐halide perovskites can decrease by ca. 50 GPa upon replacement of Cl with Br. Layered Cu–Cl perovskites require pressures >50 GPa to show a conductivity of 10−4 S cm−1, whereas here a Cu–Br congener, (EA)2CuBr4 (EA=ethylammonium), exhibits conductivity as high as 2×10−3 S cm−1 at only 2.6 GPa, and 0.17 S cm−1 at 59 GPa. Substitution of higher‐energy Br 4p for Cl 3p orbitals lowers the charge‐transfer band gap of the perovskite by 0.9 eV. This 1.7 eV band gap decreases to 0.3 eV at 65 GPa. High‐pressure X‐ray diffraction, optical absorption, and transport measurements, and density functional theory calculations allow us to track compression‐induced structural and electronic changes. The notable enhancement of the Br perovskite's electronic response to pressure may be attributed to more diffuse Br valence orbitals relative to Cl orbitals. This work brings the compression‐induced conductivity of Cu‐halide perovskites to more technologically accessible pressures.},
doi = {10.1002/anie.201912575},
journal = {Angewandte Chemie (International Edition)},
number = [10],
volume = [59],
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 2, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Pressure‐induced disappearance of the in‐plane lattice distortion in layered cupric chloride: (C 2 H 5 NH 3 ) 2 CuCl 4
journal, August 1994

  • Moritomo, Y.; Tokura, Y.
  • The Journal of Chemical Physics, Vol. 101, Issue 3
  • DOI: 10.1063/1.467754

Electron-phonon coupling in charge-transfer and crystal-field states of Jahn-Teller CuCl 6 4 − systems
journal, October 1999


Variation of the Jahn–Teller distortion with pressure in perovskite layers A2CuCl4. Influence on the charge-transfer band
journal, January 2007

  • Rodríguez, F.; Aguado, F.; Valiente, R.
  • physica status solidi (b), Vol. 244, Issue 1
  • DOI: 10.1002/pssb.200672506

Pressure effects on Jahn-Teller distortion in perovskites: The roles of local and bulk compressibilities
journal, March 2012


Pressure-Induced Conductivity and Yellow-to-Black Piezochromism in a Layered Cu–Cl Hybrid Perovskite
journal, January 2015

  • Jaffe, Adam; Lin, Yu; Mao, Wendy L.
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja512396m

The role of Jahn–Teller distortion in insulator to semiconductor phase transition in organic–inorganic hybrid compound (p-chloroanilinium) 2 CuCl 4 at high pressure
journal, January 2015

  • Ghalsasi, Pallavi; Garg, Nandini; Deo, M. N.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 48
  • DOI: 10.1039/C5CP05293A

High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH 3 -(CH 2 ) 4 -NH 3 ]CuCl 4
journal, January 2017


Correlation between the pressure-induced changes in the Hall coefficient and Tc in superconducting cuprates
journal, November 1991


Crystal structures of three new copper(II) halide layered perovskites: structural, crystallographic, and magnetic correlations
journal, December 1988

  • Willett, Roger.; Place, Helen.; Middleton, Michael.
  • Journal of the American Chemical Society, Vol. 110, Issue 26
  • DOI: 10.1021/ja00234a010

Structures of the antiferrodistortive layer perovskites bis(phenethylammonium) tetrahalocuprate(II), halo = Cl−, Br−
journal, April 1990

  • Willett, R. D.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 46, Issue 4
  • DOI: 10.1107/S0108270189007535

Experiments on simple magnetic model systems
journal, January 1974


Pressure-Induced Metallization of the Halide Perovskite (CH 3 NH 3 )PbI 3
journal, March 2017

  • Jaffe, Adam; Lin, Yu; Mao, Wendy L.
  • Journal of the American Chemical Society, Vol. 139, Issue 12
  • DOI: 10.1021/jacs.7b01162

Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites
journal, July 2003


Polarized, single-crystal, electronic spectral studies of hexachlorodicuprate(2-): excited-state effects of binuclear interaction
journal, January 1987

  • Desjardins, Sylvie R.; Wilcox, Dean E.; Musselman, Ronald L.
  • Inorganic Chemistry, Vol. 26, Issue 2
  • DOI: 10.1021/ic00249a017

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data
journal, February 2009


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Influence of the exchange screening parameter on the performance of screened hybrid functionals
journal, December 2006

  • Krukau, Aliaksandr V.; Vydrov, Oleg A.; Izmaylov, Artur F.
  • The Journal of Chemical Physics, Vol. 125, Issue 22
  • DOI: 10.1063/1.2404663

Suppression of Jahn–Teller Distortions and Origin of Piezochromism and Thermochromism in Cu–Cl Hybrid Perovskite
journal, June 2016


The electronic structure of organic–inorganic hybrid compounds: (NH 4 ) 2 CuCl 4 , (CH 3 NH 3 ) 2 CuCl 4 and (C 2 H 5 NH 3 ) 2 CuCl 4
journal, June 2013


Lead-Free MA 2 CuCl x Br 4– x Hybrid Perovskites
journal, January 2016


Halide Perovskites under Pressure: Accessing New Properties through Lattice Compression
journal, June 2017