skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode

Abstract

To achieve good rate capability of lithium metal anodes for high-energy-density batteries, one fundamental challenge is the slow lithium diffusion at the interface. Here we report an interpenetrated, three-dimensional lithium metal/lithium tin alloy nanocomposite foil realized by a simple calendering and folding process of lithium and tin foils, and spontaneous alloying reactions. The strong affinity between the metallic lithium and lithium tin alloy as mixed electronic and ionic conducting networks, and their abundant interfaces enable ultrafast charger diffusion across the entire electrode. We demonstrate that a lithium/lithium tin alloy foil electrode sustains stable lithium stripping/plating under 30 mA cm -2 and 5 mAh cm -2 with a very low overpotential of 20 mV for 200 cycles in a commercial carbonate electrolyte. Cycled under 6 C (6.6 mA cm -2), a 1.0 mAh cm -2 LiNi 0.6Co 0.2Mn 0.2O 2 electrode maintains a substantial 74% of its capacity by pairing with such anode.

Authors:
; ; ; ORCiD logo; ; ORCiD logo;
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1604576
Grant/Contract Number:  
[AC02-76SF00515]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
[ Journal Volume: 11; Journal Issue: 1]; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English

Citation Formats

Wan, Mintao, Kang, Sujin, Wang, Li, Lee, Hyun-Wook, Zheng, Guangyuan Wesley, Cui, Yi, and Sun, Yongming. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. United States: N. p., 2020. Web. doi:10.1038/s41467-020-14550-3.
Wan, Mintao, Kang, Sujin, Wang, Li, Lee, Hyun-Wook, Zheng, Guangyuan Wesley, Cui, Yi, & Sun, Yongming. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. United States. doi:10.1038/s41467-020-14550-3.
Wan, Mintao, Kang, Sujin, Wang, Li, Lee, Hyun-Wook, Zheng, Guangyuan Wesley, Cui, Yi, and Sun, Yongming. Tue . "Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode". United States. doi:10.1038/s41467-020-14550-3. https://www.osti.gov/servlets/purl/1604576.
@article{osti_1604576,
title = {Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode},
author = {Wan, Mintao and Kang, Sujin and Wang, Li and Lee, Hyun-Wook and Zheng, Guangyuan Wesley and Cui, Yi and Sun, Yongming},
abstractNote = {To achieve good rate capability of lithium metal anodes for high-energy-density batteries, one fundamental challenge is the slow lithium diffusion at the interface. Here we report an interpenetrated, three-dimensional lithium metal/lithium tin alloy nanocomposite foil realized by a simple calendering and folding process of lithium and tin foils, and spontaneous alloying reactions. The strong affinity between the metallic lithium and lithium tin alloy as mixed electronic and ionic conducting networks, and their abundant interfaces enable ultrafast charger diffusion across the entire electrode. We demonstrate that a lithium/lithium tin alloy foil electrode sustains stable lithium stripping/plating under 30 mA cm-2 and 5 mAh cm-2 with a very low overpotential of 20 mV for 200 cycles in a commercial carbonate electrolyte. Cycled under 6 C (6.6 mA cm-2), a 1.0 mAh cm-2 LiNi0.6Co0.2Mn0.2O2 electrode maintains a substantial 74% of its capacity by pairing with such anode.},
doi = {10.1038/s41467-020-14550-3},
journal = {Nature Communications},
number = [1],
volume = [11],
place = {United States},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Electronic structure of tin oxides: High-resolution study of XPS and Auger spectra: ELECTRONIC STRUCTURE OF TIN OXIDES
journal, July 1995

  • Kövér, L.; Kovács, Zs.; Sanjinés, R.
  • Surface and Interface Analysis, Vol. 23, Issue 7-8
  • DOI: 10.1002/sia.740230705

Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate
journal, January 2002

  • Mogi, Ryo; Inaba, Minoru; Jeong, Soon-Ki
  • Journal of The Electrochemical Society, Vol. 149, Issue 12
  • DOI: 10.1149/1.1516770

Polyphase alloys as rechargeable electrodes in advanced battery systems
journal, March 1988


Rational material design for ultrafast rechargeable lithium-ion batteries
journal, January 2015

  • Tang, Yuxin; Zhang, Yanyan; Li, Wenlong
  • Chemical Society Reviews, Vol. 44, Issue 17
  • DOI: 10.1039/C4CS00442F

A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017


An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

An Outlook on Lithium Ion Battery Technology
journal, September 2017


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Review on recent progress of nanostructured anode materials for Li-ion batteries
journal, July 2014


Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


Fast ion transport at solid–solid interfaces in hybrid battery anodes
journal, March 2018


Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode
journal, May 2017

  • Chi, Shang-Sen; Liu, Yongchang; Song, Wei-Li
  • Advanced Functional Materials, Vol. 27, Issue 24
  • DOI: 10.1002/adfm.201700348

Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Nanocrevasse-Rich Carbon Fibers for Stable Lithium and Sodium Metal Anodes
journal, November 2018


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


Lithium batteries: Status, prospects and future
journal, May 2010


2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries
journal, February 2018


Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework
journal, September 2017


High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
journal, March 2018


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries
journal, September 2018


Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth
journal, January 2016

  • Zhang, Rui; Cheng, Xin-Bing; Zhao, Chen-Zi
  • Advanced Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adma.201504117

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries
journal, October 2017


Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Lithium Ionic Conductor Thio-LISICON: The Li2S-GeS2-P2S5 System
journal, January 2001

  • Kanno, Ryoji; Murayama, Masahiro
  • Journal of The Electrochemical Society, Vol. 148, Issue 7, p. A742-A746
  • DOI: 10.1149/1.1379028

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Electrochemical Properties of Li-Zn Alloy Electrodes Prepared by Kinetically Controlled Vapor Deposition for Lithium Batteries
journal, January 1999

  • Shi, Zhong
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 7
  • DOI: 10.1149/1.1391133

A soft X-ray study of the interaction of oxygen with Li
journal, August 1990


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041