DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Leading-order anisotropic hydrodynamics for central collisions

Abstract

In this work, we use leading-order anisotropic hydrodynamics to study an azimuthally symmetric boost-invariant quark-gluon plasma. We impose a realistic lattice-based equation of state and perform self-consistent anisotropic freeze-out to hadronic degrees of freedom. We then compare our results for the full spatiotemporal evolution of the quark-gluon plasma and its subsequent freeze-out to results obtained using 1+1D Israel-Stewart second-order viscous hydrodynamics. We find that for small shear viscosities, 4πη/s ~1, the two methods agree well for nucleus-nucleus collisions; however, for large-shear-viscosity-to-entropy-density ratios or proton-nucleus collisions we find important corrections to the Israel-Stewart results for the final particle spectra and the total number of charged particles. Finally, we demonstrate that the total number of charged particles produced is a monotonically increasing function of 4πη/s in Israel-Stewart viscous hydrodynamics, whereas in anisotropic hydrodynamics it has a maximum at 4πη/s ~10. For all 4πη/s > 0, we find that for Pb-Pb collisions Israel-Stewart viscous hydrodynamics predicts more dissipative particle production than anisotropic hydrodynamics.

Authors:
 [1];  [1];  [2];  [3]; ORCiD logo [3];  [3]
  1. Kent State Univ., Kent, OH (United States)
  2. Polish Academy of Sciences, Krakow (Poland)
  3. The Ohio State Univ., Columbus, OH (United States)
Publication Date:
Research Org.:
The Ohio State Univ., Columbus, OH (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP); Polish National Science Centre (NCN)
OSTI Identifier:
1604529
Alternate Identifier(s):
OSTI ID: 1224375
Grant/Contract Number:  
SC0004286; SC0013470; AC02-05CH11231; SC0004104; DEC-2012/07/D/ST2/02125; AC0205CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review C, Nuclear Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 4; Journal ID: ISSN 0556-2813
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS

Citation Formats

Nopoush, Mohammad, Strickland, Michael, Ryblewski, Radoslaw, Bazow, Dennis, Heinz, Ulrich, and Martinez, Mauricio. Leading-order anisotropic hydrodynamics for central collisions. United States: N. p., 2015. Web. doi:10.1103/PhysRevC.92.044912.
Nopoush, Mohammad, Strickland, Michael, Ryblewski, Radoslaw, Bazow, Dennis, Heinz, Ulrich, & Martinez, Mauricio. Leading-order anisotropic hydrodynamics for central collisions. United States. https://doi.org/10.1103/PhysRevC.92.044912
Nopoush, Mohammad, Strickland, Michael, Ryblewski, Radoslaw, Bazow, Dennis, Heinz, Ulrich, and Martinez, Mauricio. Tue . "Leading-order anisotropic hydrodynamics for central collisions". United States. https://doi.org/10.1103/PhysRevC.92.044912. https://www.osti.gov/servlets/purl/1604529.
@article{osti_1604529,
title = {Leading-order anisotropic hydrodynamics for central collisions},
author = {Nopoush, Mohammad and Strickland, Michael and Ryblewski, Radoslaw and Bazow, Dennis and Heinz, Ulrich and Martinez, Mauricio},
abstractNote = {In this work, we use leading-order anisotropic hydrodynamics to study an azimuthally symmetric boost-invariant quark-gluon plasma. We impose a realistic lattice-based equation of state and perform self-consistent anisotropic freeze-out to hadronic degrees of freedom. We then compare our results for the full spatiotemporal evolution of the quark-gluon plasma and its subsequent freeze-out to results obtained using 1+1D Israel-Stewart second-order viscous hydrodynamics. We find that for small shear viscosities, 4πη/s ~1, the two methods agree well for nucleus-nucleus collisions; however, for large-shear-viscosity-to-entropy-density ratios or proton-nucleus collisions we find important corrections to the Israel-Stewart results for the final particle spectra and the total number of charged particles. Finally, we demonstrate that the total number of charged particles produced is a monotonically increasing function of 4πη/s in Israel-Stewart viscous hydrodynamics, whereas in anisotropic hydrodynamics it has a maximum at 4πη/s ~10. For all 4πη/s > 0, we find that for Pb-Pb collisions Israel-Stewart viscous hydrodynamics predicts more dissipative particle production than anisotropic hydrodynamics.},
doi = {10.1103/PhysRevC.92.044912},
journal = {Physical Review C, Nuclear Physics},
number = 4,
volume = 92,
place = {United States},
year = {Tue Oct 27 00:00:00 EDT 2015},
month = {Tue Oct 27 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transport coefficients of bulk viscous pressure in the 14-moment approximation
journal, August 2014


Projection method for boost-invariant and cylindrically symmetric dissipative hydrodynamics
journal, April 2012


Studying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equation
journal, December 2014


Relativistic viscous hydrodynamics, conformal invariance, and holography
journal, April 2008


Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze-out
journal, November 2002


Conformal hydrodynamics in Minkowski and de Sitter spacetimes
journal, May 2011


Divergence-type 2 + 1 dissipative hydrodynamics applied to heavy-ion collisions
journal, November 2010


Flow and interferometry in (3 + 1)-dimensional viscous hydrodynamics
journal, March 2012


Highly anisotropic and strongly dissipative hydrodynamics for early stages of relativistic heavy-ion collisions
journal, March 2011


Projection method and new formulation of leading-order anisotropic hydrodynamics
journal, March 2014


Particle spectra in Pb-Pb collisions at s NN = 2 . 76 TeV
journal, June 2012


Relativistic (lattice) Boltzmann equation with nonideal equation of state
journal, March 2012


Symmetry constraints on generalizations of Bjorken flow
journal, October 2010


Boost-invariant (2+1)-dimensional anisotropic hydrodynamics
journal, June 2012

  • Martinez, Mauricio; Ryblewski, Radoslaw; Strickland, Michael
  • Physical Review C, Vol. 85, Issue 6
  • DOI: 10.1103/PhysRevC.85.064913

Bulk and shear viscosities of matter created in relativistic heavy-ion collisions
journal, March 2010


Anisotropic hydrodynamics for ultra-relativistic heavy-ion collisions
journal, July 2013


The QCD equation of state with dynamical quarks
journal, November 2010

  • Borsányi, Szabolcs; Endrődi, Gergely; Fodor, Zoltán
  • Journal of High Energy Physics, Vol. 2010, Issue 11
  • DOI: 10.1007/JHEP11(2010)077

Highly anisotropic and strongly dissipative hydrodynamics with transverse expansion
journal, November 2011


Mixture of Anisotropic Fluids
journal, January 2013


Macroscopic approximation to relativistic kinetic theory from a nonlinear closure
journal, February 2013


Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions
journal, September 2015


Dissipative Relativistic Fluid Dynamics: A New Way to Derive the Equations of Motion from Kinetic Theory
journal, October 2010


Dissipative dynamics of highly anisotropic systems
journal, December 2010


Dissipative hydrodynamics and heavy-ion collisions
journal, June 2006


Causal theories of dissipative relativistic fluid dynamics for nuclear collisions
journal, March 2004


Extracting the QGP viscosity from RHIC data—a status report from viscous hydrodynamics
journal, May 2009


Nonconformal viscous anisotropic hydrodynamics
journal, June 2015


Bulk viscous evolution within anisotropic hydrodynamics
journal, July 2014


Extension of relativistic dissipative hydrodynamics to third order
journal, April 2010


Non-boost-invariant motion of dissipative and highly anisotropic fluid
journal, December 2010

  • Ryblewski, Radoslaw; Florkowski, Wojciech
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 38, Issue 1
  • DOI: 10.1088/0954-3899/38/1/015104

Rapid hydrodynamic expansion in relativistic heavy-ion collisions
journal, April 2009


THERMINATOR 2: THERMal heavy IoN generATOR 2
journal, March 2012

  • Chojnacki, Mikołaj; Kisiel, Adam; Florkowski, Wojciech
  • Computer Physics Communications, Vol. 183, Issue 3
  • DOI: 10.1016/j.cpc.2011.11.018

Relativistic quantum transport coefficients for second-order viscous hydrodynamics
journal, May 2015


Components of the elliptic flow in Pb–Pb collisions at <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>2.76</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
journal, May 2011


Anisotropic hydrodynamics for conformal Gubser flow
journal, February 2015


Shear-bulk coupling in nonconformal hydrodynamics
journal, October 2014

  • Denicol, Gabriel S.; Florkowski, Wojciech; Ryblewski, Radoslaw
  • Physical Review C, Vol. 90, Issue 4
  • DOI: 10.1103/PhysRevC.90.044905

Simulating elliptic flow with viscous hydrodynamics
journal, March 2008


Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?
journal, October 2007


Effect of shear viscosity on spectra, elliptic flow, and Hanbury Brown–Twiss radii
journal, September 2003


Second-Order Dissipative Fluid Dynamics for Ultrarelativistic Nuclear Collisions
journal, January 2002


The effect of shear and bulk viscosities on elliptic flow
journal, August 2010


Causal viscous hydrodynamics for central heavy-ion collisions
journal, May 2007


Kinetic Description of Mixtures of Anisotropic Fluids
journal, January 2014


Non-boost-invariant anisotropic dynamics
journal, April 2011


Divergence-type nonlinear conformal hydrodynamics
journal, December 2009


Derivation of fluid dynamics from kinetic theory with the 14-moment approximation
journal, November 2012


Elliptic and Triangular Flow in Event-by-Event D = 3 + 1 Viscous Hydrodynamics
journal, January 2011


Anisotropic flow in <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>2.76</mml:mn><mml:mtext> TeV</mml:mtext></mml:math> <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi mathvariant="normal">Pb</mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant="normal">Pb</mml:mi></mml:math> collisions at the LHC
journal, August 2011


Derivation of transient relativistic fluid dynamics from the Boltzmann equation
journal, June 2012


New Exact Solution of the Relativistic Boltzmann Equation and its Hydrodynamic Limit
journal, November 2014


Second-order ( 2 + 1 ) -dimensional anisotropic hydrodynamics
journal, November 2014


Hydrodynamics of anisotropic quark and gluon fluids
journal, March 2013


Dissipative hydrodynamics for viscous relativistic fluids
journal, March 2006


Conformal relativistic viscous hydrodynamics: Applications to RHIC results at s NN = 200 GeV
journal, September 2008


Leading-order anisotropic hydrodynamics for systems with massive particles
journal, May 2014

  • Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
  • Physical Review C, Vol. 89, Issue 5
  • DOI: 10.1103/PhysRevC.89.054909

Anisotropic hydrodynamics for rapidly expanding systems
journal, October 2013


Testing viscous and anisotropic hydrodynamics in an exactly solvable case
journal, August 2013

  • Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
  • Physical Review C, Vol. 88, Issue 2
  • DOI: 10.1103/PhysRevC.88.024903

Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics
journal, January 2015


Exact solution of the ( 0 + 1 )-dimensional Boltzmann equation for a massive gas
journal, May 2014


Radial and elliptic flow at RHIC: further predictions
journal, March 2001


Influence of Shear Viscosity of Quark-Gluon Plasma on Elliptic Flow in Ultrarelativistic Heavy-Ion Collisions
journal, May 2011


Hydrodynamic approach to boost invariant free streaming
journal, August 2015


Highly anisotropic hydrodynamics in 3 + 1 space-time dimensions
journal, June 2012


Works referencing / citing this record:

Predictions for Bottomonia Suppression in 5.023 TeV Pb-Pb Collisions
journal, August 2016


Sensitivity of flow harmonics to sub-nucleon scale fluctuations in heavy ion collisions
text, January 2015


Including off-diagonal anisotropies in anisotropic hydrodynamics
text, January 2019