skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 13, 2020

Title: Large scale maximum average power multiple inference on time‐course count data with application to RNA‐seq analysis

Authors:
 [1]; ORCiD logo [1];  [1];  [2]
  1. Department of StatisticsColorado State University Fort Collins Colorado
  2. Department of BiologyColorado State UniversityFort Collins Colorado
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1604120
Grant/Contract Number:  
[DE‐SC0018344]
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Biometrics
Additional Journal Information:
[Journal Name: Biometrics Journal Volume: 76 Journal Issue: 1]; Journal ID: ISSN 0006-341X
Publisher:
Wiley-Blackwell
Country of Publication:
United States
Language:
English

Citation Formats

Cao, Meng, Zhou, Wen, Breidt, F. Jay, and Peers, Graham. Large scale maximum average power multiple inference on time‐course count data with application to RNA‐seq analysis. United States: N. p., 2019. Web. doi:10.1111/biom.13144.
Cao, Meng, Zhou, Wen, Breidt, F. Jay, & Peers, Graham. Large scale maximum average power multiple inference on time‐course count data with application to RNA‐seq analysis. United States. doi:10.1111/biom.13144.
Cao, Meng, Zhou, Wen, Breidt, F. Jay, and Peers, Graham. Thu . "Large scale maximum average power multiple inference on time‐course count data with application to RNA‐seq analysis". United States. doi:10.1111/biom.13144.
@article{osti_1604120,
title = {Large scale maximum average power multiple inference on time‐course count data with application to RNA‐seq analysis},
author = {Cao, Meng and Zhou, Wen and Breidt, F. Jay and Peers, Graham},
abstractNote = {},
doi = {10.1111/biom.13144},
journal = {Biometrics},
number = [1],
volume = [76],
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 13, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation
journal, June 2014


Model diagnostics for smoothing spline ANOVA models
journal, December 2004

  • Gu, Chong
  • Canadian Journal of Statistics, Vol. 32, Issue 4
  • DOI: 10.2307/3316020

Improved statistical tests for differential gene expression by shrinking variance components estimates
journal, December 2004


Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series
journal, June 2014


The optimal discovery procedure: a new approach to simultaneous significance testing
journal, June 2007


Optimal Rate of Convergence for Finite Mixture Models
journal, February 1995


Small-sample estimation of negative binomial dispersion, with applications to SAGE data
journal, July 2007


edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
journal, November 2009


Variance component score test for time-course gene set analysis of longitudinal RNA-seq data
journal, March 2017


Optimal Tests Shrinking Both Means and Variances Applicable to Microarray Data Analysis
journal, January 2010

  • Hwang, J. T. Gene; Liu, Peng
  • Statistical Applications in Genetics and Molecular Biology, Vol. 9, Issue 1
  • DOI: 10.2202/1544-6115.1587

Identifiability of Finite Mixtures
journal, December 1963


Differential expression analysis for sequence count data
journal, October 2010


A negative binomial model for time series of counts
journal, July 2009


stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage
journal, August 2017


The Phaeodactylum genome reveals the evolutionary history of diatom genomes
journal, October 2008

  • Bowler, Chris; Allen, Andrew E.; Badger, Jonathan H.
  • Nature, Vol. 456, Issue 7219
  • DOI: 10.1038/nature07410

A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data
journal, February 2012

  • Kvam, Vanessa M.; Liu, Peng; Si, Yaqing
  • American Journal of Botany, Vol. 99, Issue 2
  • DOI: 10.3732/ajb.1100340

deGPS is a powerful tool for detecting differential expression in RNA-sequencing studies
journal, June 2015


Tuning parameter selectors for the smoothly clipped absolute deviation method
journal, August 2007


voom: precision weights unlock linear model analysis tools for RNA-seq read counts
journal, January 2014


Comparative analysis of differential gene expression tools for RNA sequencing time course data
journal, October 2017

  • Spies, Daniel; Renz, Peter F.; Beyer, Tobias A.
  • Briefings in Bioinformatics, Vol. 20, Issue 1
  • DOI: 10.1093/bib/bbx115

GPrank: an R package for detecting dynamic elements from genome-wide time series
journal, October 2018


On the Identifiability of Finite Mixtures
journal, February 1968

  • Yakowitz, Sidney J.; Spragins, John D.
  • The Annals of Mathematical Statistics, Vol. 39, Issue 1
  • DOI: 10.1214/aoms/1177698520

Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model
journal, August 2016


Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
journal, January 1995


Time Series Expression Analyses Using RNA-seq: A Statistical Approach
journal, January 2013

  • Oh, Sunghee; Song, Seongho; Grabowski, Gregory
  • BioMed Research International, Vol. 2013
  • DOI: 10.1155/2013/203681

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
journal, December 2014


Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression
journal, June 2016

  • Phipson, Belinda; Lee, Stanley; Majewski, Ian J.
  • The Annals of Applied Statistics, Vol. 10, Issue 2
  • DOI: 10.1214/16-AOAS920

Variable Selection in Finite Mixture of Regression Models
journal, September 2007

  • Khalili, Abbas; Chen, Jiahua
  • Journal of the American Statistical Association, Vol. 102, Issue 479
  • DOI: 10.1198/016214507000000590

EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments
journal, April 2015