DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coupling laser physics to radiation-hydrodynamics

Abstract

In order to accurately model implosion hydrodynamics in a radiation-hydrodynamics code, it is essential to include accurate accounting for energy deposition physics. In inertial confinement fusion (ICF), where capsules are driven by lasers or laser-driven x-rays, energy deposition profiles and energy transport have a strong impact on the development and evolution of capsule dynamics and hydrodynamic instabilities. Nevertheless, accurately modeling laser beam propagation in radiation-hydrodynamics codes presents unique challenges associated with disparate resolution requirements, the potential to seed spurious noise in highly unstable systems, and computational expense. We discuss a new method for coupling laser ray-tracing physics to a radiation hydrodynamics code, developed in the process of implementing the Mazinisin laser ray-trace into the xRAGE radiation hydrodynamics code. In contrast to previous approaches, in which laser ray-tracing is performed on the radiation-hydrodynamics mesh, our method involves a mesh generation and evolution strategy that addresses the unique requirements of the laser ray-trace in a separate mesh, enabling performance enhancements and strategies to reduce noise seeded by the discretization of beams into computational rays. In addition, we have employed several methods to ensure that spurious mesh imprinting is minimized. These involved optimizing the laser and radiation-hydrodynamics meshes as well as interpolation betweenmore » them and requires the use of an exact initialization method for the radiation-hydrodynamics mesh. Furthermore, these techniques have enabled efficient computation of laser-driven implosions and other experiments with minimal introduction of spurious noise.« less

Authors:
ORCiD logo [1];  [2];  [2];  [2];  [2];  [2];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Rochester, NY (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1604052
Alternate Identifier(s):
OSTI ID: 1603696
Report Number(s):
LA-UR-19-32583
Journal ID: ISSN 0045-7930
Grant/Contract Number:  
89233218CNA000001; AC52-06NA25396; NA0001944
Resource Type:
Accepted Manuscript
Journal Name:
Computers and Fluids
Additional Journal Information:
Journal Volume: 201; Journal Issue: C; Journal ID: ISSN 0045-7930
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Laser ray-trace; Radiation-hydrodynamics; Mesh generation

Citation Formats

Haines, Brian M., Keller, D. E., Marozas, J. A., McKenty, P. W., Anderson, K. S., Collins, T. J. B., Dai, W. W., Hall, Michael L., Jones, Samuel, McKay, Jr, Michael Darrell, Rauenzahn, Rick M., and Woods, Douglas Nelson. Coupling laser physics to radiation-hydrodynamics. United States: N. p., 2020. Web. doi:10.1016/j.compfluid.2020.104478.
Haines, Brian M., Keller, D. E., Marozas, J. A., McKenty, P. W., Anderson, K. S., Collins, T. J. B., Dai, W. W., Hall, Michael L., Jones, Samuel, McKay, Jr, Michael Darrell, Rauenzahn, Rick M., & Woods, Douglas Nelson. Coupling laser physics to radiation-hydrodynamics. United States. https://doi.org/10.1016/j.compfluid.2020.104478
Haines, Brian M., Keller, D. E., Marozas, J. A., McKenty, P. W., Anderson, K. S., Collins, T. J. B., Dai, W. W., Hall, Michael L., Jones, Samuel, McKay, Jr, Michael Darrell, Rauenzahn, Rick M., and Woods, Douglas Nelson. Wed . "Coupling laser physics to radiation-hydrodynamics". United States. https://doi.org/10.1016/j.compfluid.2020.104478. https://www.osti.gov/servlets/purl/1604052.
@article{osti_1604052,
title = {Coupling laser physics to radiation-hydrodynamics},
author = {Haines, Brian M. and Keller, D. E. and Marozas, J. A. and McKenty, P. W. and Anderson, K. S. and Collins, T. J. B. and Dai, W. W. and Hall, Michael L. and Jones, Samuel and McKay, Jr, Michael Darrell and Rauenzahn, Rick M. and Woods, Douglas Nelson},
abstractNote = {In order to accurately model implosion hydrodynamics in a radiation-hydrodynamics code, it is essential to include accurate accounting for energy deposition physics. In inertial confinement fusion (ICF), where capsules are driven by lasers or laser-driven x-rays, energy deposition profiles and energy transport have a strong impact on the development and evolution of capsule dynamics and hydrodynamic instabilities. Nevertheless, accurately modeling laser beam propagation in radiation-hydrodynamics codes presents unique challenges associated with disparate resolution requirements, the potential to seed spurious noise in highly unstable systems, and computational expense. We discuss a new method for coupling laser ray-tracing physics to a radiation hydrodynamics code, developed in the process of implementing the Mazinisin laser ray-trace into the xRAGE radiation hydrodynamics code. In contrast to previous approaches, in which laser ray-tracing is performed on the radiation-hydrodynamics mesh, our method involves a mesh generation and evolution strategy that addresses the unique requirements of the laser ray-trace in a separate mesh, enabling performance enhancements and strategies to reduce noise seeded by the discretization of beams into computational rays. In addition, we have employed several methods to ensure that spurious mesh imprinting is minimized. These involved optimizing the laser and radiation-hydrodynamics meshes as well as interpolation between them and requires the use of an exact initialization method for the radiation-hydrodynamics mesh. Furthermore, these techniques have enabled efficient computation of laser-driven implosions and other experiments with minimal introduction of spurious noise.},
doi = {10.1016/j.compfluid.2020.104478},
journal = {Computers and Fluids},
number = C,
volume = 201,
place = {United States},
year = {Wed Feb 26 00:00:00 EST 2020},
month = {Wed Feb 26 00:00:00 EST 2020}
}

Journal Article:

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

High-mode Rayleigh-Taylor growth in NIF ignition capsules
journal, June 2010


The effects of target mounts in direct-drive implosions on OMEGA
journal, August 2009

  • Igumenshchev, I. V.; Marshall, F. J.; Marozas, J. A.
  • Physics of Plasmas, Vol. 16, Issue 8
  • DOI: 10.1063/1.3195065

Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign
journal, February 2015

  • Clark, D. S.; Marinak, M. M.; Weber, C. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4906897

Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth
journal, April 2014

  • Lombardini, M.; Pullin, D. I.; Meiron, D. I.
  • Journal of Fluid Mechanics, Vol. 748
  • DOI: 10.1017/jfm.2014.161

Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics
journal, April 2014

  • Lombardini, M.; Pullin, D. I.; Meiron, D. I.
  • Journal of Fluid Mechanics, Vol. 748
  • DOI: 10.1017/jfm.2014.163

Properties of the Turbulent Mixing Layer in a Spherical Implosion
journal, December 2017

  • Boureima, Ismael; Ramaprabhu, Praveen; Attal, Nitesh
  • Journal of Fluids Engineering, Vol. 140, Issue 5
  • DOI: 10.1115/1.4038401

Polar-direct-drive simulations and experiments
journal, May 2006

  • Marozas, J. A.; Marshall, F. J.; Craxton, R. S.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2184949

Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions
journal, May 2018

  • Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5022181

High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions
journal, May 2017

  • Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4981222

Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments
journal, July 2016

  • Haines, Brian M.; Grim, Gary P.; Fincke, James R.
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4959117

Observation of persistent species temperature separation in inertial confinement fusion mixtures
journal, January 2020


Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions
journal, January 2019

  • Gatu Johnson, M.; Appelbe, B. D.; Chittenden, J. P.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5066435

Modeling of direct-drive cylindrical implosion experiments with an Eulerian radiation-hydrodynamics code
journal, April 2019

  • Sauppe, J. P.; Haines, B. M.; Palaniyappan, S.
  • Physics of Plasmas, Vol. 26, Issue 4
  • DOI: 10.1063/1.5083851

The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments
journal, May 2019

  • Di Stefano, C. A.; Doss, F. W.; Rasmus, A. M.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5085332

Richtmyer–Meshkov instability growth: experiment, simulation and theory
journal, June 1999


The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules
journal, July 2017

  • Haines, Brian M.; Yi, S. A.; Olson, R. E.
  • Physics of Plasmas, Vol. 24, Issue 7
  • DOI: 10.1063/1.4993065

Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers
journal, May 2018

  • Flippo, K. A.; Doss, F. W.; Merritt, E. C.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5027194

Shock-driven hydrodynamic instability of a sinusoidally perturbed, high-Atwood number, oblique interface
journal, June 2019

  • Rasmus, A. M.; Di Stefano, C. A.; Flippo, K. A.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5093650

Laser ionization and heating of gas targets for long‐scale‐length instability experiments
journal, June 1994

  • Denavit, J.; Phillion, D. W.
  • Physics of Plasmas, Vol. 1, Issue 6
  • DOI: 10.1063/1.870653

Absorption of laser light in overdense plasmas by sheath inverse bremsstrahlung
journal, August 1995

  • Yang, T. ‐Y. Brian; Kruer, William L.; More, Richard M.
  • Physics of Plasmas, Vol. 2, Issue 8
  • DOI: 10.1063/1.871146

Direct drive: Simulations and results from the National Ignition Facility
journal, April 2016

  • Radha, P. B.; Hohenberger, M.; Edgell, D. H.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946023

Polar-direct-drive experiments on the National Ignition Facilitya)
journal, May 2015

  • Hohenberger, M.; Radha, P. B.; Myatt, J. F.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920958

Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA
journal, March 2005

  • Radha, P. B.; Goncharov, V. N.; Collins, T. J. B.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1857530

Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA
journal, May 2005

  • Radha, P. B.; Collins, T. J. B.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1882333

3D Surface Reconstruction of ICF Shells after Full Surface Spheremapping
journal, May 2006

  • Huang, H.; Stephens, R. B.; Gibson, J. B.
  • Fusion Science and Technology, Vol. 49, Issue 4
  • DOI: 10.13182/FST49-642

Triple-picket warm plastic-shell implosions on OMEGA
journal, January 2011

  • Radha, P. B.; Stoeckl, C.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 18, Issue 1
  • DOI: 10.1063/1.3544930

Direct-drive-implosion experiments with enhanced fluence balance on OMEGA
journal, January 2004

  • Marshall, F. J.; Delettrez, J. A.; Epstein, R.
  • Physics of Plasmas, Vol. 11, Issue 1
  • DOI: 10.1063/1.1628234

Computational study of instability and fill tube mitigation strategies for double shell implosions
journal, October 2019

  • Haines, Brian M.; Daughton, W. S.; Loomis, E. N.
  • Physics of Plasmas, Vol. 26, Issue 10
  • DOI: 10.1063/1.5115031

On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws
journal, January 1983

  • Harten, Amiram; Lax, Peter D.; Leer, Bram van
  • SIAM Review, Vol. 25, Issue 1
  • DOI: 10.1137/1025002

Effects of thermal conductivity of liquid layer in NIF wetted foam experiments
journal, September 2019

  • Dhakal, Tilak R.; Haines, Brian M.; Olson, Richard E.
  • Physics of Plasmas, Vol. 26, Issue 9
  • DOI: 10.1063/1.5112768

Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations
journal, August 2015

  • Cao, Duc; Moses, Gregory; Delettrez, Jacques
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928445

TOMCAT — A code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies
journal, July 1977


Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows
journal, September 1976

  • Warming, R. F.; Beam, Richard M.
  • AIAA Journal, Vol. 14, Issue 9
  • DOI: 10.2514/3.61457