skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on March 10, 2021

Title: Data-driven recovery of hidden physics in reduced order modeling of fluid flows

ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
  2. Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7465 Trondheim, Norway
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:  
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physics of Fluids
Additional Journal Information:
[Journal Name: Physics of Fluids Journal Volume: 32 Journal Issue: 3]; Journal ID: ISSN 1070-6631
American Institute of Physics
Country of Publication:
United States

Citation Formats

Pawar, Suraj, Ahmed, Shady E., San, Omer, and Rasheed, Adil. Data-driven recovery of hidden physics in reduced order modeling of fluid flows. United States: N. p., 2020. Web. doi:10.1063/5.0002051.
Pawar, Suraj, Ahmed, Shady E., San, Omer, & Rasheed, Adil. Data-driven recovery of hidden physics in reduced order modeling of fluid flows. United States. doi:10.1063/5.0002051.
Pawar, Suraj, Ahmed, Shady E., San, Omer, and Rasheed, Adil. Sun . "Data-driven recovery of hidden physics in reduced order modeling of fluid flows". United States. doi:10.1063/5.0002051.
title = {Data-driven recovery of hidden physics in reduced order modeling of fluid flows},
author = {Pawar, Suraj and Ahmed, Shady E. and San, Omer and Rasheed, Adil},
abstractNote = {},
doi = {10.1063/5.0002051},
journal = {Physics of Fluids},
number = [3],
volume = [32],
place = {United States},
year = {2020},
month = {3}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 10, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Geometric Subspace Updates with Applications to Online Adaptive Nonlinear Model Reduction
journal, January 2018

  • Zimmermann, Ralf; Peherstorfer, Benjamin; Willcox, Karen
  • SIAM Journal on Matrix Analysis and Applications, Vol. 39, Issue 1
  • DOI: 10.1137/17m1123286

Perspective on machine learning for advancing fluid mechanics
journal, October 2019

Data-assisted reduced-order modeling of extreme events in complex dynamical systems
journal, May 2018

Distilling Free-Form Natural Laws from Experimental Data
journal, April 2009

Artificial viscosity proper orthogonal decomposition
journal, January 2011

  • Borggaard, Jeff; Iliescu, Traian; Wang, Zhu
  • Mathematical and Computer Modelling, Vol. 53, Issue 1-2
  • DOI: 10.1016/j.mcm.2010.08.015

Discovering Physical Concepts with Neural Networks
journal, January 2020

On the stability and extension of reduced-order Galerkin models in incompressible flows: A numerical study of vortex shedding
journal, June 2009

  • Akhtar, Imran; Nayfeh, Ali H.; Ribbens, Calvin J.
  • Theoretical and Computational Fluid Dynamics, Vol. 23, Issue 3
  • DOI: 10.1007/s00162-009-0112-y

A reduced order model for turbulent flows in the urban environment using machine learning
journal, January 2019

Propagating uncertainties in large-scale hemodynamics models via network uncertainty quantification and reduced-order modeling
journal, January 2020

  • Guzzetti, S.; Mansilla Alvarez, L. A.; Blanco, P. J.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 358
  • DOI: 10.1016/j.cma.2019.112626

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
journal, February 2019

Identification strategies for model-based control
journal, July 2013

A domain decomposition method for the non-intrusive reduced order modelling of fluid flow
journal, September 2019

  • Xiao, D.; Fang, F.; Heaney, C. E.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 354
  • DOI: 10.1016/j.cma.2019.05.039

Efficiency of a POD-based reduced second-order adjoint model in 4D-Var data assimilation
journal, January 2007

  • Daescu, D. N.; Navon, I. M.
  • International Journal for Numerical Methods in Fluids, Vol. 53, Issue 6
  • DOI: 10.1002/fld.1316

Data-driven correction reduced order models for the quasi-geostrophic equations: a numerical investigation
journal, February 2020

Model Reduction for Flow Analysis and Control
journal, January 2017

Model reduction by CPOD and Kriging: Application to the shape optimization of an intake port
journal, October 2009

  • Xiao, Manyu; Breitkopf, Piotr; Filomeno Coelho, Rajan
  • Structural and Multidisciplinary Optimization, Vol. 41, Issue 4
  • DOI: 10.1007/s00158-009-0434-9

Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models
journal, August 2008

Memory embedded non-intrusive reduced order modeling of non-ergodic flows
journal, December 2019

  • Ahmed, Shady E.; Rahman, Sk. Mashfiqur; San, Omer
  • Physics of Fluids, Vol. 31, Issue 12
  • DOI: 10.1063/1.5128374

On Low-Dimensional Galerkin Models for Fluid Flow
journal, June 2000

Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction
journal, March 2006

An artificial neural network framework for reduced order modeling of transient flows
journal, October 2019

  • San, Omer; Maulik, Romit; Ahmed, Mansoor
  • Communications in Nonlinear Science and Numerical Simulation, Vol. 77
  • DOI: 10.1016/j.cnsns.2019.04.025

Digital Twin in Industry: State-of-the-Art
journal, April 2019

  • Tao, Fei; Zhang, He; Liu, Ang
  • IEEE Transactions on Industrial Informatics, Vol. 15, Issue 4
  • DOI: 10.1109/tii.2018.2873186

Sparse reduced-order modelling: sensor-based dynamics to full-state estimation
journal, April 2018

  • Loiseau, Jean-Christophe; Noack, Bernd R.; Brunton, Steven L.
  • Journal of Fluid Mechanics, Vol. 844
  • DOI: 10.1017/jfm.2018.147

Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils
journal, December 2019

Reducing the Dimensionality of Data with Neural Networks
journal, July 2006

A deep learning enabler for nonintrusive reduced order modeling of fluid flows
journal, August 2019

  • Pawar, S.; Rahman, S. M.; Vaddireddy, H.
  • Physics of Fluids, Vol. 31, Issue 8
  • DOI: 10.1063/1.5113494

Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data
journal, January 2020

  • Vaddireddy, Harsha; Rasheed, Adil; Staples, Anne E.
  • Physics of Fluids, Vol. 32, Issue 1
  • DOI: 10.1063/1.5136351

A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
journal, January 2015

  • Benner, Peter; Gugercin, Serkan; Willcox, Karen
  • SIAM Review, Vol. 57, Issue 4
  • DOI: 10.1137/130932715

Parameterised non-intrusive reduced order methods for ensemble Kalman filter data assimilation
journal, November 2018

Spectral proper orthogonal decomposition
journal, March 2016

  • Sieber, Moritz; Paschereit, C. Oliver; Oberleithner, Kilian
  • Journal of Fluid Mechanics, Vol. 792
  • DOI: 10.1017/jfm.2016.103

Modal Analysis of Fluid Flows: Applications and Outlook
journal, March 2020

  • Taira, Kunihiko; Hemati, Maziar S.; Brunton, Steven L.
  • AIAA Journal, Vol. 58, Issue 3
  • DOI: 10.2514/1.J058462

Approximate deconvolution large eddy simulation of a stratified two-layer quasigeostrophic ocean model
journal, March 2013

pyROM: A computational framework for reduced order modeling
journal, January 2019

Multi-scale proper orthogonal decomposition of complex fluid flows
journal, May 2019

  • Mendez, M. A.; Balabane, M.; Buchlin, J. -M.
  • Journal of Fluid Mechanics, Vol. 870
  • DOI: 10.1017/jfm.2019.212

Normal forms for reduced stochastic climate models
journal, February 2009

  • Majda, A. J.; Franzke, C.; Crommelin, D.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 10
  • DOI: 10.1073/pnas.0900173106

Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison
journal, September 2012

  • Wang, Zhu; Akhtar, Imran; Borggaard, Jeff
  • Computer Methods in Applied Mechanics and Engineering, Vol. 237-240
  • DOI: 10.1016/j.cma.2012.04.015

A multiscale method for model order reduction in PDE parameter estimation
journal, April 2019

Neural network closures for nonlinear model order reduction
journal, January 2018

Hybrid constitutive modeling: data-driven learning of corrections to plasticity models
journal, October 2018

  • Ibáñez, Rubén; Abisset-Chavanne, Emmanuelle; González, David
  • International Journal of Material Forming, Vol. 12, Issue 4
  • DOI: 10.1007/s12289-018-1448-x

Error estimation of the parametric non-intrusive reduced order model using machine learning
journal, October 2019

Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity
journal, July 2008

  • Amsallem, David; Farhat, Charbel
  • AIAA Journal, Vol. 46, Issue 7
  • DOI: 10.2514/1.35374

Closed-Loop Turbulence Control: Progress and Challenges
journal, August 2015

  • Brunton, Steven L.; Noack, Bernd R.
  • Applied Mechanics Reviews, Vol. 67, Issue 5
  • DOI: 10.1115/1.4031175

Deep learning and process understanding for data-driven Earth system science
journal, February 2019

Reduced order modeling for nonlinear structural analysis using Gaussian process regression
journal, November 2018

  • Guo, Mengwu; Hesthaven, Jan S.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 341
  • DOI: 10.1016/j.cma.2018.07.017

Hidden physics models: Machine learning of nonlinear partial differential equations
journal, March 2018

Physically constrained data‐driven correction for reduced‐order modeling of fluid flows
journal, October 2018

  • Mohebujjaman, M.; Rebholz, L. G.; Iliescu, T.
  • International Journal for Numerical Methods in Fluids, Vol. 89, Issue 3
  • DOI: 10.1002/fld.4684

Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
journal, November 2019

  • Murata, Takaaki; Fukami, Kai; Fukagata, Koji
  • Journal of Fluid Mechanics, Vol. 882
  • DOI: 10.1017/jfm.2019.822

Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
journal, October 2016

  • Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy
  • Journal of Fluid Mechanics, Vol. 807
  • DOI: 10.1017/jfm.2016.615

Machine Learning for Fluid Mechanics
journal, September 2019

PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network
journal, December 2019

POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
journal, August 2015

Data-driven discovery of partial differential equations
journal, April 2017

  • Rudy, Samuel H.; Brunton, Steven L.; Proctor, Joshua L.
  • Science Advances, Vol. 3, Issue 4
  • DOI: 10.1126/sciadv.1602614

Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
journal, February 2019

  • Rabault, Jean; Kuchta, Miroslav; Jensen, Atle
  • Journal of Fluid Mechanics, Vol. 865
  • DOI: 10.1017/jfm.2019.62

Projection-based model reduction: Formulations for physics-based machine learning
journal, January 2019

Model reduction for compressible flows using POD and Galerkin projection
journal, February 2004

  • Rowley, Clarence W.; Colonius, Tim; Murray, Richard M.
  • Physica D: Nonlinear Phenomena, Vol. 189, Issue 1-2
  • DOI: 10.1016/j.physd.2003.03.001

Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers
journal, April 2019

Nonintrusive reduced order modeling framework for quasigeostrophic turbulence
journal, November 2019

Physics-Informed Probabilistic Learning of Linear Embeddings of Nonlinear Dynamics with Guaranteed Stability
journal, January 2020

  • Pan, Shaowu; Duraisamy, Karthik
  • SIAM Journal on Applied Dynamical Systems, Vol. 19, Issue 1
  • DOI: 10.1137/19m1267246

Turbulence and the dynamics of coherent structures. I. Coherent structures
journal, January 1987

  • Sirovich, Lawrence
  • Quarterly of Applied Mathematics, Vol. 45, Issue 3
  • DOI: 10.1090/qam/910462

Model identification of reduced order fluid dynamics systems using deep learning: Model identification in fluid dynamics using deep learning
journal, August 2017

  • Wang, Z.; Xiao, D.; Fang, F.
  • International Journal for Numerical Methods in Fluids, Vol. 86, Issue 4
  • DOI: 10.1002/fld.4416

Parametric free-form shape design with PDE models and reduced basis method
journal, April 2010

  • Lassila, Toni; Rozza, Gianluigi
  • Computer Methods in Applied Mechanics and Engineering, Vol. 199, Issue 23-24
  • DOI: 10.1016/j.cma.2010.01.007

The digital twin of discrete dynamic systems: Initial approaches and future challenges
journal, January 2020

De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets
journal, April 2017

  • Hemati, Maziar S.; Rowley, Clarence W.; Deem, Eric A.
  • Theoretical and Computational Fluid Dynamics, Vol. 31, Issue 4
  • DOI: 10.1007/s00162-017-0432-2

Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
journal, November 2019

Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition
journal, February 2006

Non-intrusive reduced-order modeling for fluid problems: A brief review
journal, December 2019

  • Yu, Jian; Yan, Chao; Guo, Mengwu
  • Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 233, Issue 16
  • DOI: 10.1177/0954410019890721