skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 26, 2020

Title: GRB 180620A: Evidence for Late-time Energy Injection

Abstract

The early optical emission of gamma-ray bursts (GRBs) gives an opportunity to understand the central engine and first stages of these events. About 30% of GRBs present flares whose origin is still a subject of discussion. We present optical photometry of GRB 180620A with the COATLI telescope and RATIR instrument. COATLI started to observe from the end of prompt emission at T + 39.3 s and RATIR from T + 121.4 s. We supplement the optical data with the X-ray light curve from Swift/XRT. We observe an optical flare from T + 110 s to T + 550 s, with a temporal index decay α O,decay = 1.32 ± 0.01, and Δt/t = 1.63, which we interpret as the signature of a reverse shock component. After the initial normal decay the light curves show a long plateau from T + 500 s to T + 7800 s in both X-rays and the optical before decaying again after an achromatic jet break at T + 7800 s. Fluctuations are seen during the plateau phase in the optical. Adding to the complexity of GRB afterglows, the plateau phase (typically associated with the coasting phase of the jet) is seen in this objectmore » after the "normal" decay phase (associated with the deceleration phase of the jet), and the jet break phase occurs directly after the plateau. Finally, we suggest that this sequence of events can be explained by a rapid deceleration of the jet with t d ≲ 40 s due to the high density of the environment (≈100 cm -3) followed by reactivation of the central engine, which causes the flare and powers the plateau phase.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [1];  [3]; ORCiD logo [1];  [4]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [1]; ORCiD logo [6]
  1. Univ. Nacional Autónoma de México, Mexico City (Mexico)
  2. Arizona State Univ., Tempe, AZ (United States)
  3. Univ. of California, Berkeley, CA (United States)
  4. Space Telescope Science Inst., Baltimore, MD (United States)
  5. Univ. of California, Santa Cruz, CA (United States)
  6. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Univ. of Maryland, College Park, MD (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Aeronautic and Space Administration (NASA); CONACyT; UNAM PAPIIT; UC MEXUS-CONACyT
OSTI Identifier:
1603563
Grant/Contract Number:  
[AC02-05CH11231; NNX09AH71G; NNX09AT02G; NNX10AI27G; NNX12AE66G; INFR-2009-01-122785; CB-2008-101958; IG100414; IA102917; CN 09-283; IN117917]
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
[Journal Name: The Astrophysical Journal (Online); Journal Volume: 887; Journal Issue: 2]; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
gamma-ray burst; optical telescopes; gamma-ray bursters; gamma-ray sources

Citation Formats

Becerra, R. L., De Colle, F., Watson, A. M., Fraija, N., Butler, N. R., Lee, W. H., Román-Zúñiga, C. G., Bloom, J. S., González, J. J., Kutyrev, A. S., Prochaska, J. X., Ramirez-Ruiz, E., Richer, M. G., and Troja, E. GRB 180620A: Evidence for Late-time Energy Injection. United States: N. p., 2019. Web. doi:10.3847/1538-4357/ab5859.
Becerra, R. L., De Colle, F., Watson, A. M., Fraija, N., Butler, N. R., Lee, W. H., Román-Zúñiga, C. G., Bloom, J. S., González, J. J., Kutyrev, A. S., Prochaska, J. X., Ramirez-Ruiz, E., Richer, M. G., & Troja, E. GRB 180620A: Evidence for Late-time Energy Injection. United States. doi:10.3847/1538-4357/ab5859.
Becerra, R. L., De Colle, F., Watson, A. M., Fraija, N., Butler, N. R., Lee, W. H., Román-Zúñiga, C. G., Bloom, J. S., González, J. J., Kutyrev, A. S., Prochaska, J. X., Ramirez-Ruiz, E., Richer, M. G., and Troja, E. Thu . "GRB 180620A: Evidence for Late-time Energy Injection". United States. doi:10.3847/1538-4357/ab5859.
@article{osti_1603563,
title = {GRB 180620A: Evidence for Late-time Energy Injection},
author = {Becerra, R. L. and De Colle, F. and Watson, A. M. and Fraija, N. and Butler, N. R. and Lee, W. H. and Román-Zúñiga, C. G. and Bloom, J. S. and González, J. J. and Kutyrev, A. S. and Prochaska, J. X. and Ramirez-Ruiz, E. and Richer, M. G. and Troja, E.},
abstractNote = {The early optical emission of gamma-ray bursts (GRBs) gives an opportunity to understand the central engine and first stages of these events. About 30% of GRBs present flares whose origin is still a subject of discussion. We present optical photometry of GRB 180620A with the COATLI telescope and RATIR instrument. COATLI started to observe from the end of prompt emission at T + 39.3 s and RATIR from T + 121.4 s. We supplement the optical data with the X-ray light curve from Swift/XRT. We observe an optical flare from T + 110 s to T + 550 s, with a temporal index decay α O,decay = 1.32 ± 0.01, and Δt/t = 1.63, which we interpret as the signature of a reverse shock component. After the initial normal decay the light curves show a long plateau from T + 500 s to T + 7800 s in both X-rays and the optical before decaying again after an achromatic jet break at T + 7800 s. Fluctuations are seen during the plateau phase in the optical. Adding to the complexity of GRB afterglows, the plateau phase (typically associated with the coasting phase of the jet) is seen in this object after the "normal" decay phase (associated with the deceleration phase of the jet), and the jet break phase occurs directly after the plateau. Finally, we suggest that this sequence of events can be explained by a rapid deceleration of the jet with t d ≲ 40 s due to the high density of the environment (≈100 cm-3) followed by reactivation of the central engine, which causes the flare and powers the plateau phase.},
doi = {10.3847/1538-4357/ab5859},
journal = {The Astrophysical Journal (Online)},
number = [2],
volume = [887],
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 26, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows
journal, September 2015

  • Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol
  • Monthly Notices of the Royal Astronomical Society, Vol. 454, Issue 1
  • DOI: 10.1093/mnras/stv2033

SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

First Light with RATIR: An Automated 6-band Optical/NIR Imaging Camera
conference, September 2012

  • Butler, Nat; Klein, Chris; Fox, Ori
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.926471

From Engine to Afterglow: Collapsars Naturally Produce Top-Heavy jets and Early-Time Plateaus in Gamma-Ray Burst Afterglows
journal, June 2015


Methods and results of an automatic analysis of a complete sample of Swift -XRT observations of GRBs
journal, August 2009


Modeling the Early Afterglow in the Short and hard grb 090510
journal, October 2016


The Shape of Spectral Breaks in Gamma‐Ray Burst Afterglows
journal, April 2002

  • Granot, Jonathan; Sari, Re’em
  • The Astrophysical Journal, Vol. 568, Issue 2
  • DOI: 10.1086/338966

GROND—a 7-Channel Imager
journal, April 2008

  • Greiner, J.; Bornemann, W.; Clemens, C.
  • Publications of the Astronomical Society of the Pacific, Vol. 120, Issue 866
  • DOI: 10.1086/587032

Variabilities of Gamma‐Ray Burst Afterglows: Long‐acting Engine, Anisotropic Jet, or Many Fluctuating Regions?
journal, September 2005

  • Ioka, Kunihito; Kobayashi, Shiho; Zhang, Bing
  • The Astrophysical Journal, Vol. 631, Issue 1
  • DOI: 10.1086/432567

Light Curves of Gamma‐Ray Burst Optical Flashes
journal, December 2000

  • Kobayashi, Shiho
  • The Astrophysical Journal, Vol. 545, Issue 2
  • DOI: 10.1086/317869

Can Internal Shocks Produce the Variability in Gamma‐Ray Bursts?
journal, November 1997

  • Kobayashi, Shiho; Piran, Tsvi; Sari, Re'em
  • The Astrophysical Journal, Vol. 490, Issue 1
  • DOI: 10.1086/512791

Inverse Compton X‐Ray Flare from Gamma‐Ray Burst Reverse Shock
journal, January 2007

  • Kobayashi, S.; Zhang, B.; Meszaros, P.
  • The Astrophysical Journal, Vol. 655, Issue 1
  • DOI: 10.1086/510198

The physics of gamma-ray bursts & relativistic jets
journal, February 2015


Astrometry.Net: Blind Astrometric Calibration of Arbitrary Astronomical Images
journal, March 2010


The tidal disruption of neutron stars by black holes in close binaries
journal, November 1976

  • Lattimer, J. M.; Schramm, D. N.
  • The Astrophysical Journal, Vol. 210
  • DOI: 10.1086/154860

The progenitors of short gamma-ray bursts
journal, January 2007


Collapsars: Gamma‐Ray Bursts and Explosions in “Failed Supernovae”
journal, October 1999

  • MacFadyen, A. I.; Woosley, S. E.
  • The Astrophysical Journal, Vol. 524, Issue 1
  • DOI: 10.1086/307790

Smooth light curves from a bumpy ride: relativistic blast wave encounters a density jump
journal, September 2007


Evidence for a Canonical Gamma‐Ray Burst Afterglow Light Curve in the Swift XRT Data
journal, May 2006

  • Nousek, J. A.; Kouveliotou, C.; Grupe, D.
  • The Astrophysical Journal, Vol. 642, Issue 1
  • DOI: 10.1086/500724

Gamma-ray bursters at cosmological distances
journal, September 1986

  • Paczynski, B.
  • The Astrophysical Journal, Vol. 308
  • DOI: 10.1086/184740

Analytic Light Curves of Gamma‐Ray Burst Afterglows: Homogeneous versus Wind External Media
journal, November 2000

  • Panaitescu, A.; Kumar, P.
  • The Astrophysical Journal, Vol. 543, Issue 1
  • DOI: 10.1086/317090

Gamma-ray bursts and the fireball model
journal, June 1999


Unsteady outflow models for cosmological gamma-ray bursts
journal, August 1994

  • Rees, M. J.; Meszaros, P.
  • The Astrophysical Journal, Vol. 430
  • DOI: 10.1086/187446

Refreshed Shocks and Afterglow Longevity in Gamma-Ray Bursts
journal, March 1998

  • Rees, M. J.; Mészáros, P.
  • The Astrophysical Journal, Vol. 496, Issue 1
  • DOI: 10.1086/311244

Spectra and Light Curves of Gamma-Ray Burst Afterglows
journal, April 1998

  • Sari, Re'em; Piran, Tsvi; Narayan, Ramesh
  • The Astrophysical Journal, Vol. 497, Issue 1
  • DOI: 10.1086/311269

A model of gamma-ray bursts
journal, October 1994

  • Thompson, Christopher
  • Monthly Notices of the Royal Astronomical Society, Vol. 270, Issue 3
  • DOI: 10.1093/mnras/270.3.480

The Iraf Data Reduction And Analysis System
conference, October 1986


THE Pan-STARRS1 PHOTOMETRIC SYSTEM
journal, April 2012


Automation of the OAN/SPM 1.5-meter Johnson telescope for operations with RATIR
conference, September 2012

  • Watson, Alan M.; Richer, Michael G.; Bloom, Joshua S.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.926927

Gamma-ray bursts from stellar mass accretion disks around black holes
journal, March 1993

  • Woosley, S. E.
  • The Astrophysical Journal, Vol. 405
  • DOI: 10.1086/172359

Physical Processes Shaping Gamma‐Ray Burst X‐Ray Afterglow Light Curves: Theoretical Implications from the Swift X‐Ray Telescope Observations
journal, May 2006

  • Zhang, Bing; Fan, Y. Z.; Dyks, Jaroslaw
  • The Astrophysical Journal, Vol. 642, Issue 1
  • DOI: 10.1086/500723