Enhanced CO2 Capture and Hydrogen Purification by Hydroxy Metal–Organic Framework/Polyimide Mixed Matrix Membranes
Abstract
Membrane separation technology provides substantial savings in energy and cost for molecular separations in chemical industry, ideally complementing conventional thermally driven separation approaches. However, current membranes are subject to limitations, primarily lying in the Robeson permeability-selectivity upper bound limits. In this study, hydroxy metal-organic framework (MOF)/polyimide mixed-matrix membranes are found to enable high separation performance for applications including CO2 capture and hydrogen purification while offering enhanced compatibility with state-of-the-art membrane-manufacturing processes. The mixed-matrix membranes exceed the present Robeson upper bounds with H2 and CO2 permeabilities of 907 and 650 Barrers, respectively and H2/CH4 and CO2/CH4 selectivities of 45 and 32, respectively. The unparalleled performance results from intimate interactions at the boundary of the hydroxy MOFs and carboxylic polymers through strong hydrogen bonds. Finally, the principle of design opens the door to highly permeable membranes with synergistic compatibility with established membrane manufacturing platforms for energy-efficient molecular separations.
- Authors:
-
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
- Publication Date:
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Laboratory Directed Research and Development (LDRD) Program
- OSTI Identifier:
- 1603534
- Alternate Identifier(s):
- OSTI ID: 1562330
- Grant/Contract Number:
- AC02-05CH11231; IA0000018; AC02-05CH11231, IA0000018
- Resource Type:
- Accepted Manuscript
- Journal Name:
- ChemSusChem
- Additional Journal Information:
- Journal Volume: 12; Journal Issue: 19; Journal ID: ISSN 1864-5631
- Publisher:
- ChemPubSoc Europe
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; carbon capture; hydrogen bonds; membranes; metal-organic frameworks; separations
Citation Formats
Ma, Canghai, and Urban, Jeffrey J. Enhanced CO2 Capture and Hydrogen Purification by Hydroxy Metal–Organic Framework/Polyimide Mixed Matrix Membranes. United States: N. p., 2019.
Web. doi:10.1002/cssc.201902248.
Ma, Canghai, & Urban, Jeffrey J. Enhanced CO2 Capture and Hydrogen Purification by Hydroxy Metal–Organic Framework/Polyimide Mixed Matrix Membranes. United States. https://doi.org/10.1002/cssc.201902248
Ma, Canghai, and Urban, Jeffrey J. Tue .
"Enhanced CO2 Capture and Hydrogen Purification by Hydroxy Metal–Organic Framework/Polyimide Mixed Matrix Membranes". United States. https://doi.org/10.1002/cssc.201902248. https://www.osti.gov/servlets/purl/1603534.
@article{osti_1603534,
title = {Enhanced CO2 Capture and Hydrogen Purification by Hydroxy Metal–Organic Framework/Polyimide Mixed Matrix Membranes},
author = {Ma, Canghai and Urban, Jeffrey J.},
abstractNote = {Membrane separation technology provides substantial savings in energy and cost for molecular separations in chemical industry, ideally complementing conventional thermally driven separation approaches. However, current membranes are subject to limitations, primarily lying in the Robeson permeability-selectivity upper bound limits. In this study, hydroxy metal-organic framework (MOF)/polyimide mixed-matrix membranes are found to enable high separation performance for applications including CO2 capture and hydrogen purification while offering enhanced compatibility with state-of-the-art membrane-manufacturing processes. The mixed-matrix membranes exceed the present Robeson upper bounds with H2 and CO2 permeabilities of 907 and 650 Barrers, respectively and H2/CH4 and CO2/CH4 selectivities of 45 and 32, respectively. The unparalleled performance results from intimate interactions at the boundary of the hydroxy MOFs and carboxylic polymers through strong hydrogen bonds. Finally, the principle of design opens the door to highly permeable membranes with synergistic compatibility with established membrane manufacturing platforms for energy-efficient molecular separations.},
doi = {10.1002/cssc.201902248},
journal = {ChemSusChem},
number = 19,
volume = 12,
place = {United States},
year = {2019},
month = {8}
}
Web of Science
Works referenced in this record:
Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration
journal, January 2011
- Yang, Qingyuan; Wiersum, Andrew D.; Llewellyn, Philip L.
- Chemical Communications, Vol. 47, Issue 34
Suppression of aging and plasticization in highly permeable polymers
journal, October 2015
- Yong, Wai Fen; Kwek, Kar Hui Andrel; Liao, Kuo-Sung
- Polymer, Vol. 77
A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals
journal, November 2010
- Bae, Tae-Hyun; Lee, Jong Suk; Qiu, Wulin
- Angewandte Chemie International Edition, Vol. 49, Issue 51, p. 9863-9866
Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals
journal, April 2016
- Bachman, Jonathan E.; Smith, Zachary P.; Li, Tao
- Nature Materials, Vol. 15, Issue 8
Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes
journal, July 2012
- Koros, William J.; Lively, Ryan P.
- AIChE Journal, Vol. 58, Issue 9
Seven chemical separations to change the world
journal, April 2016
- Sholl, David S.; Lively, Ryan P.
- Nature, Vol. 532, Issue 7600
Physical aging, CO 2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1)
journal, September 2017
- Tiwari, Rajkiran R.; Jin, Jianyong; Freeman, B. D.
- Journal of Membrane Science, Vol. 537
Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations
journal, May 2014
- Zhang, Chen; Zhang, Kuang; Xu, Liren
- AIChE Journal, Vol. 60, Issue 7
Mixed-matrix membranes containing MOF-5 for gas separations
journal, February 2009
- Perez, Edson V.; Balkus, Kenneth J.; Ferraris, John P.
- Journal of Membrane Science, Vol. 328, Issue 1-2, p. 165-173
Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8
journal, January 2013
- Bushell, Alexandra F.; Attfield, Martin P.; Mason, Christopher R.
- Journal of Membrane Science, Vol. 427
Interfacial Engineering in Metal–Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes
journal, November 2018
- Wang, Hongliang; He, Sanfeng; Qin, Xuedi
- Journal of the American Chemical Society, Vol. 140, Issue 49
Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1
journal, February 2017
- Khdhayyer, Muhanned R.; Esposito, Elisa; Fuoco, Alessio
- Separation and Purification Technology, Vol. 173
Enhanced CO 2 /CH 4 Separation Performance of a Mixed Matrix Membrane Based on Tailored MOF-Polymer Formulations
journal, August 2018
- Liu, Yang; Liu, Gongping; Zhang, Chen
- Advanced Science, Vol. 5, Issue 9
Ester-Cross-linkable Composite Hollow Fiber Membranes for CO 2 Removal from Natural Gas
journal, June 2013
- Ma, Canghai; Koros, William J.
- Industrial & Engineering Chemistry Research, Vol. 52, Issue 31
A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals
journal, November 2010
- Bae, Tae-Hyun; Lee, Jong Suk; Qiu, Wulin
- Angewandte Chemie, Vol. 122, Issue 51
Mixed matrix membranes using carbon molecular sieves
journal, January 2003
- Vu, De Q.; Koros, William J.; Miller, Stephen J.
- Journal of Membrane Science, Vol. 211, Issue 2
Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles
journal, June 2017
- Ghalei, Behnam; Sakurai, Kento; Kinoshita, Yosuke
- Nature Energy, Vol. 2, Issue 7
Nanoporous framework “reservoir” maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture
journal, January 2019
- Li, Songwei; Jiang, Xu; Yang, Xiaobin
- Journal of Membrane Science, Vol. 570-571
Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes
journal, January 2016
- Su, Norman C.; Sun, Daniel T.; Beavers, Christine M.
- Energy & Environmental Science, Vol. 9, Issue 3
Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves
journal, August 2003
- Vu, De Q.; Koros, William J.; Miller, Stephen J.
- Journal of Membrane Science, Vol. 221, Issue 1-2
Energy-Efficient Hydrogen Separation by AB-Type Ladder-Polymer Molecular Sieves
journal, July 2014
- Ghanem, Bader S.; Swaidan, Raja; Ma, Xiaohua
- Advanced Materials, Vol. 26, Issue 39
Size-Dependent Permeability Deviations from Maxwell’s Model in Hybrid Cross-Linked Poly(ethylene glycol)/Silica Nanoparticle Membranes
journal, March 2015
- Su, Norman C.; Smith, Zachary P.; Freeman, Benny D.
- Chemistry of Materials, Vol. 27, Issue 7
High-performance ester-crosslinked hollow fiber membranes for natural gas separations
journal, February 2013
- Ma, Canghai; Koros, William J.
- Journal of Membrane Science, Vol. 428
Natural Gas Processing with Membranes: An Overview
journal, April 2008
- Baker, Richard W.; Lokhandwala, Kaaeid
- Industrial & Engineering Chemistry Research, Vol. 47, Issue 7
Microporous polymeric membranes inspired by adsorbent for gas separation
journal, January 2017
- Dong, Guangxi; Lee, Young Moo
- Journal of Materials Chemistry A, Vol. 5, Issue 26
Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat
journal, April 2017
- Park, Thomas J.; Reznick, Jane; Peterson, Bethany L.
- Science, Vol. 356, Issue 6335
Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations
journal, May 2012
- Dai, Ying; Johnson, J. R.; Karvan, Oğuz
- Journal of Membrane Science, Vol. 401-402
Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives
journal, July 2018
- Ahmad, Mohd Zamidi; Navarro, Marta; Lhotka, Miloslav
- Journal of Membrane Science, Vol. 558
Enhanced Interfacial Interaction and CO 2 Separation Performance of Mixed Matrix Membrane by Incorporating Polyethylenimine-Decorated Metal–Organic Frameworks
journal, January 2015
- Xin, Qingping; Ouyang, Jingyi; Liu, Tianyu
- ACS Applied Materials & Interfaces, Vol. 7, Issue 2
Physical aging of ultrathin glassy polymer films tracked by gas permeability
journal, November 2009
- Rowe, Brandon W.; Freeman, Benny D.; Paul, Donald R.
- Polymer, Vol. 50, Issue 23
Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation
journal, April 2007
- Chung, Tai-Shung; Jiang, Lan Ying; Li, Yi
- Progress in Polymer Science, Vol. 32, Issue 4, p. 483-507
Interface manipulation of CO 2 –philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO 2 capture
journal, January 2018
- Jiang, Xu; Li, Songwei; He, Shanshan
- Journal of Materials Chemistry A, Vol. 6, Issue 31
Materials for next-generation molecularly selective synthetic membranes
journal, January 2017
- Koros, William J.; Zhang, Chen
- Nature Materials, Vol. 16, Issue 3
Challenges and opportunities for mixed-matrix membranes for gas separation
journal, January 2013
- Dong, Guangxi; Li, Hongyu; Chen, Vicki
- Journal of Materials Chemistry A, Vol. 1, Issue 15
A facile synthesis of UiO-66, UiO-67 and their derivatives
journal, January 2013
- Katz, Michael J.; Brown, Zachary J.; Colón, Yamil J.
- Chemical Communications, Vol. 49, Issue 82
Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO 2 separation
journal, January 2017
- Wang, Zhenggong; Ren, Huiting; Zhang, Shenxiang
- Journal of Materials Chemistry A, Vol. 5, Issue 22
Membrane-based gas separation
journal, August 1993
- Koros, W. J.; Fleming, G. K.
- Journal of Membrane Science, Vol. 83, Issue 1, p. 1-80
Tröger 's base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals
journal, March 2019
- Fan, Yanfang; Li, Cong; Zhang, Xiaosa
- Journal of Membrane Science, Vol. 573
Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation
journal, April 2007
- Joseph, Jorly; Jemmis, Eluvathingal D.
- Journal of the American Chemical Society, Vol. 129, Issue 15
Effect of partially immobilizing sorption on permeability and the diffusion time lag
journal, April 1976
- Paul, D. R.; Koros, W. J.
- Journal of Polymer Science: Polymer Physics Edition, Vol. 14, Issue 4
50th Anniversary Perspective : Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities
journal, October 2017
- Galizia, Michele; Chi, Won Seok; Smith, Zachary P.
- Macromolecules, Vol. 50, Issue 20
Hydrogen‐Bonded Polyimide/Metal‐Organic Framework Hybrid Membranes for Ultrafast Separations of Multiple Gas Pairs
journal, June 2019
- Ma, Canghai; Urban, Jeffrey J.
- Advanced Functional Materials, Vol. 29, Issue 32
A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability
journal, October 2008
- Cavka, Jasmina Hafizovic; Jakobsen, Søren; Olsbye, Unni
- Journal of the American Chemical Society, Vol. 130, Issue 42, p. 13850-13851
Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation
journal, May 2013
- Wijenayake, Sumudu N.; Panapitiya, Nimanka P.; Versteeg, Saskia H.
- Industrial & Engineering Chemistry Research, Vol. 52, Issue 21, p. 6991-7001
Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations
journal, February 2018
- Liu, Gongping; Chernikova, Valeriya; Liu, Yang
- Nature Materials, Vol. 17, Issue 3
Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO 2 capture?
journal, January 2015
- Seoane, Beatriz; Coronas, Joaquin; Gascon, Ignacio
- Chemical Society Reviews, Vol. 44, Issue 8
Metal–organic framework membranes: from synthesis to separation application
journal, January 2014
- Qiu, Shilun; Xue, Ming; Zhu, Guangshan
- Chem. Soc. Rev., Vol. 43, Issue 16
Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles
journal, January 2015
- Venna, Surendar R.; Lartey, Michael; Li, Tao
- Journal of Materials Chemistry A, Vol. 3, Issue 9
The upper bound revisited
journal, July 2008
- Robeson, Lloyd M.
- Journal of Membrane Science, Vol. 320, Issue 1-2, p. 390-400
Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities
journal, March 2018
- Cheng, Youdong; Wang, Zhihong; Zhao, Dan
- Industrial & Engineering Chemistry Research, Vol. 57, Issue 12
Ultra-Microporous Triptycene-based Polyimide Membranes for High-Performance Gas Separation
journal, March 2014
- Ghanem, Bader S.; Swaidan, Raja; Litwiller, Eric
- Advanced Materials, Vol. 26, Issue 22
Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?
other, January 2015
- Seoane, Beatriz; Coronas, Joaquin; Gascon, Ignacio
- Cambridge : Royal Society of Chemistry
Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat
text, January 2017
- Park, Tj; Reznick, J.; Peterson, Bl
- Apollo - University of Cambridge Repository