A simple pyrocosm for studying soil microbial response to fire reveals a rapid, massive response by Pyronema species
We have designed a pyrocosm to enable fine-scale dissection of post-fire soil microbial communities. Using it we show that the peak soil temperature achieved at a given depth occurs hours after the fire is out, lingers near this peak for a significant time, and is accurately predicted by soil depth and the mass of charcoal burned. Flash fuels that produce no large coals were found to have a negligible soil heating effect. Coupling this system with Illumina MiSeq sequencing of the control and post-fire soil we show that we can stimulate a rapid, massive response by Pyronema, a well-known genus of pyrophilous fungus, within two weeks of a test fire. This specific stimulation occurs in a background of many other fungal taxa that do not change noticeably with the fire, although there is an overall reduction in richness and evenness. We introduce a thermo-chemical gradient model to summarize the way that heat, soil depth and altered soil chemistry interact to create a predictable, depth-structured habitat for microbes in post-fire soils. Coupling this model with the temperature relationships found in the pyrocosms, we predict that the width of a survivable “goldilocks zone”, which achieves temperatures that select for postfire-adapted microbes, will stay relatively constant across a range of fuel loads. In addition we predict that a larger necromass zone, containing labile carbon and nutrients from recently heat-killed organisms, will increase in size rapidly with addition of fuel and then remain nearly constant in size over a broad range of fuel loads. The simplicity of this experimental system, coupled with the availability of a set of sequenced, assembled and annotated genomes of pyrophilous fungi, offers a powerful tool for dissecting the ecology of post-fire microbial communities.
- Research Organization:
- Univ. of Wisconsin, Madison, WI (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Biological and Environmental Research (BER)
- Grant/Contract Number:
- SC0016365; SC0020351
- OSTI ID:
- 1602906
- Alternate ID(s):
- OSTI ID: 1638367
- Journal Information:
- PLoS ONE, Journal Name: PLoS ONE Vol. 15 Journal Issue: 3; ISSN 1932-6203
- Publisher:
- Public Library of ScienceCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Diversity of genomic adaptations to the post-fire environment in Pezizales fungi points to crosstalk between charcoal tolerance and sexual development
Surface-active antibiotic production as a multifunctional adaptation for postfire microorganisms