skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Current loss analysis in photoelectrochemical devices

Authors:
ORCiD logo [1]; ORCiD logo [2]
  1. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA, Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA, Walter Schottky Institute and Physics Department, Technische Universität München, Garching 85748, Germany
  2. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA, Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1602894
Grant/Contract Number:  
[SC0004993]
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
APL Materials
Additional Journal Information:
[Journal Name: APL Materials Journal Volume: 8 Journal Issue: 3]; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Kistler, Tobias A., and Agbo, Peter. Current loss analysis in photoelectrochemical devices. United States: N. p., 2020. Web. doi:10.1063/1.5142561.
Kistler, Tobias A., & Agbo, Peter. Current loss analysis in photoelectrochemical devices. United States. doi:10.1063/1.5142561.
Kistler, Tobias A., and Agbo, Peter. Sun . "Current loss analysis in photoelectrochemical devices". United States. doi:10.1063/1.5142561.
@article{osti_1602894,
title = {Current loss analysis in photoelectrochemical devices},
author = {Kistler, Tobias A. and Agbo, Peter},
abstractNote = {},
doi = {10.1063/1.5142561},
journal = {APL Materials},
number = [3],
volume = [8],
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1063/1.5142561

Save / Share:

Works referenced in this record:

Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system
journal, November 2018


Degradation in photoelectrochemical devices: review with an illustrative case study
journal, February 2017

  • Nandjou, Fredy; Haussener, Sophia
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 12
  • DOI: 10.1088/1361-6463/aa5b11

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Photoelectrochemical cells for solar hydrogen production: Challenges and opportunities
journal, August 2019

  • Chiu, Yi-Hsuan; Lai, Ting-Hsuan; Kuo, Ming-Yu
  • APL Materials, Vol. 7, Issue 8
  • DOI: 10.1063/1.5109785

Energy loss analysis in photoelectrochemical water splitting: a case study of hematite photoanodes
journal, January 2018

  • Wang, Zhiliang; Lyu, Miaoqiang; Chen, Peng
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 35
  • DOI: 10.1039/c8cp04021d

Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique
journal, May 2019


Proton exchange membrane electrolysis sustained by water vapor
journal, January 2011

  • Spurgeon, Joshua M.; Lewis, Nathan S.
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01203g

Editors' Choice—A Monolithic Photoelectrochemical Device Evolving Hydrogen in Pure Water
journal, January 2019

  • Kistler, Tobias A.; Danilovic, Nemanja; Agbo, Peter
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.1151913jes

Integrated Membrane-Electrode-Assembly Photoelectrochemical Cell under Various Feed Conditions for Solar Water Splitting
journal, December 2018

  • Kistler, Tobias A.; Larson, David; Walczak, Karl
  • Journal of The Electrochemical Society, Vol. 166, Issue 5
  • DOI: 10.1149/2.0041905jes

Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis
journal, April 1971

  • Fujishima, Akira; Honda, Kenichi
  • Bulletin of the Chemical Society of Japan, Vol. 44, Issue 4
  • DOI: 10.1246/bcsj.44.1148

Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO
journal, June 2017

  • Schreier, Marcel; Héroguel, Florent; Steier, Ludmilla
  • Nature Energy, Vol. 2, Issue 7
  • DOI: 10.1038/nenergy.2017.87

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures
journal, March 2017

  • Young, James L.; Steiner, Myles A.; Döscher, Henning
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.28

Estimation of multi-junction solar cell parameters: Estimation of multi-junction solar cell parameters
journal, February 2012

  • Ben Or, Asaf; Appelbaum, Joseph
  • Progress in Photovoltaics: Research and Applications
  • DOI: 10.1002/pip.2158

Efficient Solar Water Splitting, Exemplified by RuO 2 -Catalyzed AlGaAs/Si Photoelectrolysis
journal, September 2000

  • Licht, S.; Wang, B.; Mukerji, S.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 38
  • DOI: 10.1021/jp002083b

Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte
journal, January 2019

  • Asadi, Mohammad; Motevaselian, Mohammad Hossein; Moradzadeh, Alireza
  • Advanced Energy Materials, Vol. 9, Issue 9
  • DOI: 10.1002/aenm.201803536

Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
journal, October 2016

  • Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13237

Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency
journal, June 2018


Fuel Cell Systems Explained, Second Edition
book, February 2003


Operando deconvolution of photovoltaic and electrocatalytic performance in ALD TiO 2 protected water splitting photocathodes
journal, January 2018

  • Cui, Wei; Niu, Wenzhe; Wick-Joliat, René
  • Chemical Science, Vol. 9, Issue 28
  • DOI: 10.1039/c8sc01453a

Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits
journal, March 2013

  • Winkler, M. T.; Cox, C. R.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 12
  • DOI: 10.1073/pnas.1301532110