skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on February 10, 2021

Title: Adsorption and reaction of methanol on Fe 3O 4 (001)

Abstract

The interaction of methanol with iron oxide surfaces is of interest due to its potential in hydrogen storage, and from a fundamental perspective as a chemical probe of the reactivity. We present here a study examining the adsorption and reaction of methanol on magnetite Fe 3O 4(001) at cryogenic temperatures using a combination of temperature programmed desorption, x-ray photoelectron spectroscopy, and scanning tunneling microscopy. We report the methanol desorption profile from Fe 3O 4(001) is complex, exhibiting peaks at 145, 175, 238, and 273 K, corresponding to the desorption of intact methanol, as well as peaks at 350 and 500 K due to the reaction of methoxy intermediates. The saturation of a monolayer of methanol corresponds to ~5 molecules/unit cell (u.c.), which is slightly higher than the number of surface octahedral iron atoms of 4/u.c. We probe the kinetics and thermodynamics of the desorption of molecular methanol using inversion analysis. The deconvolution of the complex desorption profile into individual peaks allows for calculations of both the desorption energy and the prefactor of each feature. The initial 0.7 methanol/u.c. reacts to form a methoxy and hydroxy intermediates by 180 K, which remains on the surface above room temperature after intact methanolmore » has desorbed. The methoxy species react via one of two channels, a recombination reaction with surface hydroxyls to form additional methanol at ~350 K, and a disproportionation reaction to form methanol and formaldehyde at ~500 K. Only 20% of the methoxy species undergo the disproportionation reaction, with most of them reacting via the 350 K pathway.« less

Authors:
 [1];  [2];  [1]; ORCiD logo [3]; ORCiD logo [1];  [1];  [2]; ORCiD logo [2]; ORCiD logo [4];  [1]; ORCiD logo [3]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate and Inst. for Integrated Catalysis
  2. Aarhus Univ. (Denmark)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate and Inst. for Integrated Catalysis; Washington State Univ., Pullman, WA (United States)
  4. Vienna Univ. of Technology (Austria). Inst. of Applied Physics
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; Innovation Fund Denmark; Austrian Science Fund (FWF) START
OSTI Identifier:
1602775
Alternate Identifier(s):
OSTI ID: 1598731
Report Number(s):
[PNNL-SA-149459]
[Journal ID: ISSN 0021-9606]
Grant/Contract Number:  
[AC05-76RL01830; 6151-00008B; Y 847-N20]
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
[ Journal Volume: 152; Journal Issue: 6; Related Information: This article is part of the JCP Special Topic on Oxide Chemistry and Catalysis.]; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Marcinkowski, Matthew D., Adamsen, Kræn C., Doudin, Nassar, Sharp, Marcus A., Smith, Ronald Scott, Wang, Yang, Wendt, Stefan, Lauritsen, Jeppe V., Parkinson, Gareth S., Kay, Bruce D., and Dohnálek, Zdenek. Adsorption and reaction of methanol on Fe3O4 (001). United States: N. p., 2020. Web. doi:10.1063/1.5139418.
Marcinkowski, Matthew D., Adamsen, Kræn C., Doudin, Nassar, Sharp, Marcus A., Smith, Ronald Scott, Wang, Yang, Wendt, Stefan, Lauritsen, Jeppe V., Parkinson, Gareth S., Kay, Bruce D., & Dohnálek, Zdenek. Adsorption and reaction of methanol on Fe3O4 (001). United States. doi:10.1063/1.5139418.
Marcinkowski, Matthew D., Adamsen, Kræn C., Doudin, Nassar, Sharp, Marcus A., Smith, Ronald Scott, Wang, Yang, Wendt, Stefan, Lauritsen, Jeppe V., Parkinson, Gareth S., Kay, Bruce D., and Dohnálek, Zdenek. Mon . "Adsorption and reaction of methanol on Fe3O4 (001)". United States. doi:10.1063/1.5139418.
@article{osti_1602775,
title = {Adsorption and reaction of methanol on Fe3O4 (001)},
author = {Marcinkowski, Matthew D. and Adamsen, Kræn C. and Doudin, Nassar and Sharp, Marcus A. and Smith, Ronald Scott and Wang, Yang and Wendt, Stefan and Lauritsen, Jeppe V. and Parkinson, Gareth S. and Kay, Bruce D. and Dohnálek, Zdenek},
abstractNote = {The interaction of methanol with iron oxide surfaces is of interest due to its potential in hydrogen storage, and from a fundamental perspective as a chemical probe of the reactivity. We present here a study examining the adsorption and reaction of methanol on magnetite Fe3O4(001) at cryogenic temperatures using a combination of temperature programmed desorption, x-ray photoelectron spectroscopy, and scanning tunneling microscopy. We report the methanol desorption profile from Fe3O4(001) is complex, exhibiting peaks at 145, 175, 238, and 273 K, corresponding to the desorption of intact methanol, as well as peaks at 350 and 500 K due to the reaction of methoxy intermediates. The saturation of a monolayer of methanol corresponds to ~5 molecules/unit cell (u.c.), which is slightly higher than the number of surface octahedral iron atoms of 4/u.c. We probe the kinetics and thermodynamics of the desorption of molecular methanol using inversion analysis. The deconvolution of the complex desorption profile into individual peaks allows for calculations of both the desorption energy and the prefactor of each feature. The initial 0.7 methanol/u.c. reacts to form a methoxy and hydroxy intermediates by 180 K, which remains on the surface above room temperature after intact methanol has desorbed. The methoxy species react via one of two channels, a recombination reaction with surface hydroxyls to form additional methanol at ~350 K, and a disproportionation reaction to form methanol and formaldehyde at ~500 K. Only 20% of the methoxy species undergo the disproportionation reaction, with most of them reacting via the 350 K pathway.},
doi = {10.1063/1.5139418},
journal = {Journal of Chemical Physics},
number = [6],
volume = [152],
place = {United States},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on February 10, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Physisorption of N 2 , O 2 , and CO on Fully Oxidized TiO 2 (110)
journal, March 2006

  • Dohnálek, Zdenek; Kim, Jooho; Bondarchuk, Oleksandr
  • The Journal of Physical Chemistry B, Vol. 110, Issue 12
  • DOI: 10.1021/jp0564905

Shape-dependence of the thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2
journal, December 2016


Different binding sites for methanol dehydrogenation and deoxygenation on stoichiometric and defective TiO2(110) surfaces
journal, October 2003


Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces
journal, July 2014

  • Murphy, Colin J.; Carrasco, Javier; Lawton, Timothy J.
  • The Journal of Chemical Physics, Vol. 141, Issue 1
  • DOI: 10.1063/1.4882863

The dynamic behaviour of CH 3 OH and NO 2 adsorbed on CeO 2 (111) studied by noncontact atomic force microscopy
journal, January 2004


Influence of Local Defects on the Dynamics of O–H Bond Breaking and Formation on a Magnetite Surface
journal, July 2019

  • Bourgund, Alexander; Lechner, Barbara A. J.; Meier, Matthias
  • The Journal of Physical Chemistry C, Vol. 123, Issue 32
  • DOI: 10.1021/acs.jpcc.9b05547

Status of the development of a direct methanol fuel cell
journal, December 1999


n-alkanes on MgO(100). II. Chain length dependence of kinetic desorption parameters for small n-alkanes
journal, April 2005

  • Tait, Steven L.; Dohnálek, Zdenek; Campbell, Charles T.
  • The Journal of Chemical Physics, Vol. 122, Issue 16
  • DOI: 10.1063/1.1883630

Catalytic production of hydrogen from methanol
journal, July 2000


Surface-Templated Assembly of Molecular Methanol on the Thin Film “29” Cu(111) Surface Oxide
journal, January 2019

  • Therrien, Andrew J.; Hensley, Alyssa J. R.; Hannagan, Ryan T.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 5
  • DOI: 10.1021/acs.jpcc.8b10284

The importance of diffusion in surface reactions demonstrated with STM
journal, January 1996

  • Bowker, Michael; Leibsle, F.
  • Catalysis Letters, Vol. 38, Issue 1-2
  • DOI: 10.1007/bf00806910

The water dimer II: Theoretical investigations
journal, May 2018


A review of anode catalysis in the direct methanol fuel cell
journal, April 2006


The Role of Surface Defects in the Adsorption of Methanol on Fe3O4(001)
journal, September 2016


A metastable Fe(A) termination at the Fe3O4(001) surface
journal, August 2011


Understanding Heterolytic H 2 Cleavage and Water-Assisted Hydrogen Spillover on Fe 3 O 4 (001)-Supported Single Palladium Atoms
journal, July 2019


Iron oxide surfaces
journal, March 2016


Adsorption and reaction of methanol on thin-film cerium oxide
journal, April 2006


n-alkanes on MgO(100). I. Coverage-dependent desorption kinetics of n-butane
journal, April 2005

  • Tait, Steven L.; Dohnálek, Zdenek; Campbell, Charles T.
  • The Journal of Chemical Physics, Vol. 122, Issue 16
  • DOI: 10.1063/1.1883629

Surface stabilization of organics on hematite by conversion from terminal to bridging adsorption structures
journal, March 2003


Physisorption of CO on the MgO(100) Surface
journal, May 2001

  • Dohnálek, Z.; Kimmel, Greg A.; Joyce, S. A.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 18
  • DOI: 10.1021/jp003174b

Understanding the Binding of Aromatic Hydrocarbons on Rutile TiO 2 (110)
journal, June 2019

  • Chen, Long; Zhang, Shengjie; Persaud, Rudradatt R.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 27
  • DOI: 10.1021/acs.jpcc.9b03355

A multi-technique study of CO 2 adsorption on Fe 3 O 4 magnetite
journal, January 2017

  • Pavelec, Jiri; Hulva, Jan; Halwidl, Daniel
  • The Journal of Chemical Physics, Vol. 146, Issue 1
  • DOI: 10.1063/1.4973241

Imaging Adsorbate O−H Bond Cleavage:  Methanol on TiO 2 (110)
journal, April 2006

  • Zhang, Zhenrong; Bondarchuk, Oleksandr; White, J. M.
  • Journal of the American Chemical Society, Vol. 128, Issue 13
  • DOI: 10.1021/ja058466a

Methanol Steam Reforming for Hydrogen Production
journal, October 2007

  • Palo, Daniel R.; Dagle, Robert A.; Holladay, Jamie D.
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr050198b

Thermal and photochemical reactions of methanol on nanocrystalline anatase TiO 2 thin films
journal, January 2015

  • Bennett, David A.; Cargnello, Matteo; Gordon, Thomas R.
  • Phys. Chem. Chem. Phys., Vol. 17, Issue 26
  • DOI: 10.1039/c5cp02307f

Structure Sensitivity of the Reaction of Methanol on Ceria
journal, April 2001

  • Ferrizz, R. M.; Wong, G. S.; Egami, T.
  • Langmuir, Vol. 17, Issue 8
  • DOI: 10.1021/la001729o

Reactions of Deuterated Methanol (CD 3 OD) on Fe 3 O 4 (111)
journal, January 2015

  • Li, Zhisheng; Potapenko, Denis V.; Rim, Kwang Taeg
  • The Journal of Physical Chemistry C, Vol. 119, Issue 2
  • DOI: 10.1021/jp510821g

Modern Inorganic Chemistry (Jolly, William L.)
journal, April 1985


Site Requirements for the Adsorption and Reaction of Oxygenates on Metal Oxide Surfaces
journal, November 2012


Subsurface cation vacancy stabilization of the magnetite (001) surface
journal, December 2014


Water agglomerates on Fe 3 O 4 (001)
journal, June 2018

  • Meier, Matthias; Hulva, Jan; Jakub, Zdeněk
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 25
  • DOI: 10.1073/pnas.1801661115

The Iron Oxides Strike Back: From Biomedical Applications to Energy Storage Devices and Photoelectrochemical Water Splitting
journal, July 2011

  • Tartaj, Pedro; Morales, Maria P.; Gonzalez-Carreño, Teresita
  • Advanced Materials, Vol. 23, Issue 44
  • DOI: 10.1002/adma.201101368

Desorption Kinetics of Methanol from Al 2 O 3 (0001) Studied Using Temperature-Programmed Desorption and Isothermal Desorption
journal, August 1998

  • Nishimura, S. Y.; Gibbons, R. F.; Tro, N. J.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 35
  • DOI: 10.1021/jp981624i

Hydrogen bonding and cooperative effects in mixed dimers and trimers of methanol and trifluoromethanol: An ab initio study
journal, April 1999

  • Parra, Rubén D.; Zeng, X. C.
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478537

Adsorption of Formic Acid on the Fe 3 O 4 (001) Surface
journal, August 2015

  • Gamba, Oscar; Noei, Heshmat; Pavelec, Jiří
  • The Journal of Physical Chemistry C, Vol. 119, Issue 35
  • DOI: 10.1021/acs.jpcc.5b05560

Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells
journal, February 1994


Surface point defects on bulk oxides: atomically-resolved scanning probe microscopy
journal, January 2017

  • Setvín, Martin; Wagner, Margareta; Schmid, Michael
  • Chemical Society Reviews, Vol. 46, Issue 7
  • DOI: 10.1039/c7cs00076f

Low-Temperature Oxidation of Methanol to Formaldehyde on a Model Single-Atom Catalyst: Pd Atoms on Fe 3 O 4 (001)
journal, October 2019

  • Marcinkowski, Matthew D.; Yuk, Simuck F.; Doudin, Nassar
  • ACS Catalysis, Vol. 9, Issue 12
  • DOI: 10.1021/acscatal.9b03891

Catalysts for methanol steam reforming—A review
journal, August 2010


The chemistry of methanol on the TiO2(110) surface: the influence of vacancies and coadsorbed species
journal, January 1999

  • Henderson, Michael A.; Otero-Tapia, Sary; Castro, Miguel E.
  • Faraday Discussions, Vol. 114
  • DOI: 10.1039/a902070e