skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps

Abstract

We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a $$\sim$$116 deg$$^{2}$$ area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al. 2016) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i$<$22.5 galaxy sample. We find the galaxy bias and 1$$\sigma$$ error bars in 4 photometric redshift bins to be 1.12$$\pm$$0.19 (z=0.2-0.4), 0.97$$\pm$$0.15 (z=0.4-0.6), 1.38$$\pm$$0.39 (z=0.6-0.8)), and 1.45$$\pm$$0.56 (z=0.8-1.0). These measurements are consistent at the 2$$\sigma$$ level with measurements on the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing, with most of the redshift bins consistent within the 1{\sigma} error bars. In addition, our method provides the only $$\sigma_8$$-independent constraint among the three. We forward-model the main observational effects using mock galaxy catalogs by including shape noise, photo-z errors and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
The Ohio State Univ., Columbus, OH (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
Dark Energy Survey Collaboration
OSTI Identifier:
1602509
Alternate Identifier(s):
OSTI ID: 1326746; OSTI ID: 1334305
Report Number(s):
BNL-112638-2016-JA
Journal ID: ISSN 0035-8711
Grant/Contract Number:  
SC0011726; SC00112704; AC02-SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 459; Journal Issue: 3; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; gravitational lensing: weak; surveys; large-scale structure of Universe; 79 ASTRONOMY AND ASTROPHYSICS; cosmology: large-scale structure

Citation Formats

Chang, C., Pujol, A., Gaztañaga, E., Amara, A., Réfrégier, A., Bacon, D., Becker, M. R., Bonnett, C., Carretero, J., Castander, F. J., Crocce, M., Fosalba, P., Giannantonio, T., Hartley, W., Jarvis, M., Kacprzak, T., Ross, A. J., Sheldon, E., Troxel, M. A., Vikram, V., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Estrada, J., Evrard, A. E., Flaugher, B., Frieman, J., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., Marshall, J. L., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., and Walker, A. R. Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps. United States: N. p., 2016. Web. doi:10.1093/mnras/stw861.
Chang, C., Pujol, A., Gaztañaga, E., Amara, A., Réfrégier, A., Bacon, D., Becker, M. R., Bonnett, C., Carretero, J., Castander, F. J., Crocce, M., Fosalba, P., Giannantonio, T., Hartley, W., Jarvis, M., Kacprzak, T., Ross, A. J., Sheldon, E., Troxel, M. A., Vikram, V., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Estrada, J., Evrard, A. E., Flaugher, B., Frieman, J., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., Marshall, J. L., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., & Walker, A. R. Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps. United States. doi:10.1093/mnras/stw861.
Chang, C., Pujol, A., Gaztañaga, E., Amara, A., Réfrégier, A., Bacon, D., Becker, M. R., Bonnett, C., Carretero, J., Castander, F. J., Crocce, M., Fosalba, P., Giannantonio, T., Hartley, W., Jarvis, M., Kacprzak, T., Ross, A. J., Sheldon, E., Troxel, M. A., Vikram, V., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Estrada, J., Evrard, A. E., Flaugher, B., Frieman, J., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., Marshall, J. L., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., and Walker, A. R. Fri . "Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps". United States. doi:10.1093/mnras/stw861. https://www.osti.gov/servlets/purl/1602509.
@article{osti_1602509,
title = {Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps},
author = {Chang, C. and Pujol, A. and Gaztañaga, E. and Amara, A. and Réfrégier, A. and Bacon, D. and Becker, M. R. and Bonnett, C. and Carretero, J. and Castander, F. J. and Crocce, M. and Fosalba, P. and Giannantonio, T. and Hartley, W. and Jarvis, M. and Kacprzak, T. and Ross, A. J. and Sheldon, E. and Troxel, M. A. and Vikram, V. and Zuntz, J. and Abbott, T. M. C. and Abdalla, F. B. and Allam, S. and Annis, J. and Benoit-Lévy, A. and Bertin, E. and Brooks, D. and Buckley-Geer, E. and Burke, D. L. and Capozzi, D. and Rosell, A. Carnero and Kind, M. Carrasco and Cunha, C. E. and D'Andrea, C. B. and da Costa, L. N. and Desai, S. and Diehl, H. T. and Dietrich, J. P. and Doel, P. and Eifler, T. F. and Estrada, J. and Evrard, A. E. and Flaugher, B. and Frieman, J. and Goldstein, D. A. and Gruen, D. and Gruendl, R. A. and Gutierrez, G. and Honscheid, K. and Jain, B. and James, D. J. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and Li, T. S. and Lima, M. and Marshall, J. L. and Martini, P. and Melchior, P. and Miller, C. J. and Miquel, R. and Mohr, J. J. and Nichol, R. C. and Nord, B. and Ogando, R. and Plazas, A. A. and Reil, K. and Romer, A. K. and Roodman, A. and Rykoff, E. S. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Walker, A. R.},
abstractNote = {We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a $\sim$116 deg$^{2}$ area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al. 2016) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i$<$22.5 galaxy sample. We find the galaxy bias and 1$\sigma$ error bars in 4 photometric redshift bins to be 1.12$\pm$0.19 (z=0.2-0.4), 0.97$\pm$0.15 (z=0.4-0.6), 1.38$\pm$0.39 (z=0.6-0.8)), and 1.45$\pm$0.56 (z=0.8-1.0). These measurements are consistent at the 2$\sigma$ level with measurements on the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing, with most of the redshift bins consistent within the 1{\sigma} error bars. In addition, our method provides the only $\sigma_8$-independent constraint among the three. We forward-model the main observational effects using mock galaxy catalogs by including shape noise, photo-z errors and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.},
doi = {10.1093/mnras/stw861},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 459,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The COSMOS density field: a reconstruction using both weak lensing and galaxy distributions: The COSMOS density field
journal, June 2012


Weak gravitational lensing
journal, January 2001


Bayesian Photometric Redshift Estimation
journal, June 2000

  • Benitez, Narciso
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/308947

SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

Halo-model signatures from 380 000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts
journal, April 2008


How Stochastic Is the Relative Bias between Galaxy Types?
journal, November 2000

  • Blanton, Michael
  • The Astrophysical Journal, Vol. 544, Issue 1
  • DOI: 10.1086/317198

TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests
journal, May 2013

  • Carrasco Kind, Matias; Brunner, Robert J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 2
  • DOI: 10.1093/mnras/stt574

Exhausting the information: novel Bayesian combination of photometric redshift PDFs
journal, June 2014

  • Carrasco Kind, Matias; Brunner, Robert J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 4
  • DOI: 10.1093/mnras/stu1098

An algorithm to build mock galaxy catalogues using MICE simulations
journal, December 2014

  • Carretero, J.; Castander, F. J.; Gaztañaga, E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 447, Issue 1
  • DOI: 10.1093/mnras/stu2402

Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data
journal, July 2015


A prescription for galaxy biasing evolution as a nuisance parameter
journal, February 2015

  • Clerkin, L.; Kirk, D.; Lahav, O.
  • Monthly Notices of the Royal Astronomical Society, Vol. 448, Issue 2
  • DOI: 10.1093/mnras/stu2754

Galaxy clustering in the CFHTLS-Wide: the changing relationship between galaxies and haloes since z   ~  1.2
journal, May 2012


Scale-dependent galaxy bias in the Sloan Digital Sky Survey as a function of luminosity and colour
journal, January 2009


The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues
journal, August 2015

  • Crocce, M.; Castander, F. J.; Gaztañaga, E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 453, Issue 2
  • DOI: 10.1093/mnras/stv1708

Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data
journal, December 2015

  • Crocce, M.; Carretero, J.; Bauer, A. H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 455, Issue 4
  • DOI: 10.1093/mnras/stv2590

The Blanco Cosmology Survey: data Acquisition, Processing, Calibration, Quality Diagnostics, and data Release
journal, September 2012


The dark Energy Camera
journal, October 2015


The MICE Grand Challenge light-cone simulation – III. Galaxy lensing mocks from all-sky lensing maps
journal, December 2014

  • Fosalba, P.; Gaztañaga, E.; Castander, F. J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 447, Issue 2
  • DOI: 10.1093/mnras/stu2464

The MICE grand challenge lightcone simulation – I. Dark matter clustering
journal, March 2015

  • Fosalba, P.; Crocce, M.; Gaztañaga, E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 448, Issue 4
  • DOI: 10.1093/mnras/stv138

CMB lensing tomography with the DES Science Verification galaxies
journal, January 2016

  • Giannantonio, T.; Fosalba, P.; Cawthon, R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 456, Issue 3
  • DOI: 10.1093/mnras/stv2678

SkyNet: an efficient and robust neural network training tool for machine learning in astronomy
journal, May 2014

  • Graff, Philip; Feroz, Farhan; Hobson, Michael P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 441, Issue 2
  • DOI: 10.1093/mnras/stu642

Why your model parameter confidences might be too optimistic. Unbiased estimation of the inverse covariance matrix
journal, December 2006


Cosmos: Stochastic bias from Measurements of weak Lensing and Galaxy Clustering
journal, April 2012


On the spatial correlations of Abell clusters
journal, September 1984


Mapping the dark matter with weak gravitational lensing
journal, February 1993

  • Kaiser, Nick; Squires, Gordon
  • The Astrophysical Journal, Vol. 404
  • DOI: 10.1086/172297

Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann‐Robertson‐Walker Models
journal, August 2000

  • Lewis, Antony; Challinor, Anthony; Lasenby, Anthony
  • The Astrophysical Journal, Vol. 538, Issue 2
  • DOI: 10.1086/309179

Cosmological parameter constraints from galaxy–galaxy lensing and galaxy clustering with the SDSS DR7
journal, April 2013

  • Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 2
  • DOI: 10.1093/mnras/stt572

The local bias model in the large-scale halo distribution: Local bias
journal, May 2011


Redshift evolution of clustering
journal, March 1997

  • Matarrese, S.; Coles, P.; Lucchin, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 286, Issue 1
  • DOI: 10.1093/mnras/286.1.115

The Dark Energy Survey data processing and calibration system
conference, September 2012

  • Mohr, Joseph J.; Armstrong, Robert; Bertin, Emmanuel
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.926785

Cyber-infrastructure to support science and data management for the Dark Energy Survey
conference, June 2006

  • Ngeow, C.; Mohr, J. J.; Alam, T.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.671017

Planck 2013 results. XVI. Cosmological parameters
journal, October 2014


Photometric redshift analysis in the Dark Energy Survey Science Verification data
journal, October 2014

  • Sánchez, C.; Carrasco Kind, M.; Lin, H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 445, Issue 2
  • DOI: 10.1093/mnras/stu1836

Cosmic Shear and Biasing
journal, May 1998

  • Schneider, Peter
  • The Astrophysical Journal, Vol. 498, Issue 1
  • DOI: 10.1086/305559

An implementation of Bayesian lensing shear measurement
journal, July 2014

  • Sheldon, Erin S.
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 444, Issue 1
  • DOI: 10.1093/mnrasl/slu104

GaBoDS: The Garching-Bonn Deep Survey: VI. Probing galaxy bias using weak gravitational lensing
journal, October 2006


Relative clustering and the joint halo occupation distribution of red sequence and blue-cloud galaxies in COMBO-17
journal, September 2009


SDSS galaxy clustering: luminosity and colour dependence and stochasticity
journal, April 2008

  • Swanson, Molly E. C.; Tegmark, Max; Blanton, Michael
  • Monthly Notices of the Royal Astronomical Society, Vol. 385, Issue 3
  • DOI: 10.1111/j.1365-2966.2008.12948.x

Wide-field lensing mass maps from Dark Energy Survey science verification data: Methodology and detailed analysis
journal, July 2015


The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations
journal, January 2005


Galaxy Clustering in the Completed sdss Redshift Survey: the Dependence on Color and Luminosity
journal, July 2011


im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing
journal, July 2013

  • Zuntz, Joe; Kacprzak, Tomasz; Voigt, Lisa
  • Monthly Notices of the Royal Astronomical Society, Vol. 434, Issue 2
  • DOI: 10.1093/mnras/stt1125