skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFe S 2 -based thermoelectric materials

ORCiD logo; ; ; ; ORCiD logo; ;
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:  
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Name: Physical Review Materials Journal Volume: 4 Journal Issue: 2; Journal ID: ISSN 2475-9953
American Physical Society
Country of Publication:
United States

Citation Formats

Xie, Hongyao, Su, Xianli, Hao, Shiqiang, Wolverton, Christopher, Uher, Ctirad, Tang, Xinfeng, and Kanatzidis, Mercouri G. Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFe S 2 -based thermoelectric materials. United States: N. p., 2020. Web. doi:10.1103/PhysRevMaterials.4.025405.
Xie, Hongyao, Su, Xianli, Hao, Shiqiang, Wolverton, Christopher, Uher, Ctirad, Tang, Xinfeng, & Kanatzidis, Mercouri G. Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFe S 2 -based thermoelectric materials. United States. doi:
Xie, Hongyao, Su, Xianli, Hao, Shiqiang, Wolverton, Christopher, Uher, Ctirad, Tang, Xinfeng, and Kanatzidis, Mercouri G. Fri . "Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFe S 2 -based thermoelectric materials". United States. doi:
title = {Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFe S 2 -based thermoelectric materials},
author = {Xie, Hongyao and Su, Xianli and Hao, Shiqiang and Wolverton, Christopher and Uher, Ctirad and Tang, Xinfeng and Kanatzidis, Mercouri G.},
abstractNote = {},
doi = {10.1103/PhysRevMaterials.4.025405},
journal = {Physical Review Materials},
number = 2,
volume = 4,
place = {United States},
year = {2020},
month = {2}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Electronic Transport in High-Resistivity Cerium Sulfide
journal, February 1964

High performance bulk thermoelectrics via a panoscopic approach
journal, May 2013

Cu and Fe valence states in CuFeS2
journal, May 2004

  • Boekema, C.; Krupski, A. M.; Varasteh, M.
  • Journal of Magnetism and Magnetic Materials, Vol. 272-276
  • DOI: 10.1016/j.jmmm.2003.11.206

Reduction of thermal conductivity by low energy multi-Einstein optic modes
journal, June 2016

Large Thermal Conductivity Drops in the Diamondoid Lattice of CuFeS 2 by Discordant Atom Doping
journal, November 2019

  • Xie, Hongyao; Su, Xianli; Hao, Shiqiang
  • Journal of the American Chemical Society, Vol. 141, Issue 47
  • DOI: 10.1021/jacs.9b10983

Optimum Carrier Concentration in n-Type PbTe Thermoelectrics
journal, May 2014

  • Pei, Yanzhong; Gibbs, Zachary M.; Gloskovskii, Andrei
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201400486

Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS
journal, January 2014

  • Tan, Qing; Zhao, Li-Dong; Li, Jing-Feng
  • J. Mater. Chem. A, Vol. 2, Issue 41
  • DOI: 10.1039/C4TA04462B

Origin of Intrinsically Low Thermal Conductivity in Talnakhite Cu 17.6 Fe 17.6 S 32 Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport
journal, June 2019

  • Xie, Hongyao; Su, Xianli; Zhang, Xiaomi
  • Journal of the American Chemical Society, Vol. 141, Issue 27
  • DOI: 10.1021/jacs.9b05072

Thermoelectric Property Studies on Cu-Doped n-type CuxBi2Te2.7Se0.3 Nanocomposites
journal, June 2011

  • Liu, Wei-Shu; Zhang, Qinyong; Lan, Yucheng
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 577-587
  • DOI: 10.1002/aenm.201100149

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports
journal, May 2011

  • Shi, Xun; Yang, Jiong; Salvador, James R.
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja111199y

All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance
journal, January 2013

  • Zhao, L. D.; Wu, H. J.; Hao, S. Q.
  • Energy & Environmental Science, Vol. 6, Issue 11
  • DOI: 10.1039/c3ee42187b

Low-Symmetry Rhombohedral GeTe Thermoelectrics
journal, May 2018

Characterization of Fe 3d states in CuFeS 2 by resonant X-ray emission spectroscopy
journal, May 2009

  • Sato, Katsuaki; Harada, Yoshihisa; Taguchi, Munetaka
  • physica status solidi (a), Vol. 206, Issue 5
  • DOI: 10.1002/pssa.200881196

Properties of single crystalline semiconducting CoSb 3
journal, October 1996

  • Caillat, T.; Borshchevsky, A.; Fleurial, J. ‐P.
  • Journal of Applied Physics, Vol. 80, Issue 8
  • DOI: 10.1063/1.363405

Low-temperature transport properties of p -type CoSb 3
journal, April 1995

Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites
journal, October 2015

  • Tang, Yinglu; Gibbs, Zachary M.; Agapito, Luis A.
  • Nature Materials, Vol. 14, Issue 12
  • DOI: 10.1038/nmat4430

Band structure engineering in highly degenerate tetrahedrites through isovalent doping
journal, January 2016

  • Lu, Xu; Yao, Wei; Wang, Guiwen
  • Journal of Materials Chemistry A, Vol. 4, Issue 43
  • DOI: 10.1039/C6TA07015A

High-Performance Thermoelectricity in Nanostructured Earth-Abundant Copper Sulfides Bulk Materials
journal, June 2016

  • Ge, Zhen-Hua; Liu, Xiaoye; Feng, Dan
  • Advanced Energy Materials, Vol. 6, Issue 16
  • DOI: 10.1002/aenm.201600607

Convergence of electronic bands for high performance bulk thermoelectrics
journal, May 2011

  • Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron
  • Nature, Vol. 473, Issue 7345, p. 66-69
  • DOI: 10.1038/nature09996

Thermoelectric Performance of Tetrahedrite Synthesized by a Modified Polyol Process
journal, February 2017

Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n -Type Mg 2 Si 1 x Sn x Solid Solutions
journal, April 2012

High-performance bulk thermoelectrics with all-scale hierarchical architectures
journal, September 2012

  • Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.
  • Nature, Vol. 489, Issue 7416, p. 414-418
  • DOI: 10.1038/nature11439

Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View
journal, March 2006

  • Tritt, Terry M.; Subramanian, M. A.
  • MRS Bulletin, Vol. 31, Issue 3
  • DOI: 10.1557/mrs2006.44

Thermoelectric Properties of SnS with Na-Doping
journal, April 2017

  • Zhou, Binqiang; Li, Shuai; Li, Wen
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 39
  • DOI: 10.1021/acsami.7b08770

Thermoelectric transport properties of diamond-like Cu 1−x Fe 1+x S 2 tetrahedral compounds
journal, November 2014

  • Li, Yulong; Zhang, Tiansong; Qin, Yuting
  • Journal of Applied Physics, Vol. 116, Issue 20
  • DOI: 10.1063/1.4902849

The Role of Zn in Chalcopyrite CuFeS 2 : Enhanced Thermoelectric Properties of Cu 1- x Zn x FeS 2 with In Situ Nanoprecipitates
journal, October 2016

  • Xie, Hongyao; Su, Xianli; Zheng, Gang
  • Advanced Energy Materials, Vol. 7, Issue 3
  • DOI: 10.1002/aenm.201601299

Intrinsic Rattler-Induced Low Thermal Conductivity in Zintl Type TlInTe 2
journal, March 2017

  • Jana, Manoj K.; Pal, Koushik; Warankar, Avinash
  • Journal of the American Chemical Society, Vol. 139, Issue 12
  • DOI: 10.1021/jacs.7b01434

Band structure of indium antimonide
journal, January 1957

Energy band structure in p-type germanium and silicon
journal, September 1956

Advances in thermoelectric materials research: Looking back and moving forward
journal, September 2017

Skutterudite antimonides: Quasilinear bands and unusual transport
journal, October 1994

Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device
journal, January 2017

  • Zong, Peng-an; Hanus, Riley; Dylla, Maxwell
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02467J

The Thermoelectric Properties and Solubility Limit of CuFeS2(1−x)Se2x
journal, September 2015

High Thermoelectric Power Factor in a Carrier-Doped Magnetic Semiconductor CuFeS 2
journal, April 2013

Kinetic phenomena in zero-gap semiconductors CuFeS2 and CuFeTe2: Effect of pressure and heat treatment
journal, October 2011

  • Popov, V. V.; Konstantinov, P. P.; Rud’, Yu. V.
  • Journal of Experimental and Theoretical Physics, Vol. 113, Issue 4
  • DOI: 10.1134/S1063776111090093

Nonmagnetic In Substituted CuFe 1– x In x S 2 Solid Solution Thermoelectric
journal, December 2016

  • Xie, Hongyao; Su, Xianli; Zheng, Gang
  • The Journal of Physical Chemistry C, Vol. 120, Issue 49
  • DOI: 10.1021/acs.jpcc.6b10308

Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance
journal, February 2018

  • Zheng, Zheng; Su, Xianli; Deng, Rigui
  • Journal of the American Chemical Society, Vol. 140, Issue 7
  • DOI: 10.1021/jacs.7b13611

Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion
journal, June 2017

  • Xie, Hongyao; Su, Xianli; Yan, Yonggao
  • NPG Asia Materials, Vol. 9, Issue 6
  • DOI: 10.1038/am.2017.80

Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence
journal, April 2015

  • Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang
  • Journal of the American Chemical Society, Vol. 137, Issue 15
  • DOI: 10.1021/jacs.5b00837

Superparamagnetic enhancement of thermoelectric performance
journal, September 2017

  • Zhao, Wenyu; Liu, Zhiyuan; Sun, Zhigang
  • Nature, Vol. 549, Issue 7671
  • DOI: 10.1038/nature23667

Ultrahigh Thermoelectric Performance in Mosaic Crystals
journal, May 2015

Electronic Transport in Semimetallic Cerium Sulfide
journal, February 1964

Thermoelectric properties of n-type cobalt doped chalcopyrite Cu1−xCoxFeS2 and p-type eskebornite CuFeSe2
journal, March 2015

Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent
journal, September 2015

  • Ang, Ran; Khan, Atta Ullah; Tsujii, Naohito
  • Angewandte Chemie International Edition, Vol. 54, Issue 44
  • DOI: 10.1002/anie.201505517

High Performance Thermoelectrics from Earth-Abundant Materials: Enhanced Figure of Merit in PbS by Second Phase Nanostructures
journal, December 2011

  • Zhao, Li-Dong; Lo, Shih-Han; He, Jiaqing
  • Journal of the American Chemical Society, Vol. 133, Issue 50
  • DOI: 10.1021/ja208658w

Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated Ti 1+ x S 2 Compounds
journal, August 2018

  • Zhang, Min; Zhang, Cheng; You, Yonghui
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 38
  • DOI: 10.1021/acsami.8b10449

Thermoelectric properties of the chalcopyrite Cu 1−x M x FeS 2−y series (M = Mn, Co, Ni)
journal, January 2016

  • Lefèvre, Robin; Berthebaud, David; Mychinko, M. Yu.
  • RSC Advances, Vol. 6, Issue 60
  • DOI: 10.1039/C6RA10046E

Realizing zT of 2.3 in Ge 1− x y Sb x In y Te via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping
journal, January 2018

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008

High-performance nanostructured thermoelectric materials
journal, October 2010

Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials
journal, February 2013

Low effective mass and carrier concentration optimization for high performance p-type Mg 2(1−x) Li 2x Si 0.3 Sn 0.7 solid solutions
journal, January 2014

  • Zhang, Qiang; Cheng, Long; Liu, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 43
  • DOI: 10.1039/C4CP03468F