skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on March 2, 2021

Title: On‐site surrogates for large‐scale calibration

Authors:
ORCiD logo [1];  [1];  [2];  [3]
  1. Department of StatisticsVirginia Polytechnic Institute and State University College of Science Blacksburg Virginia
  2. Mathematics Computer Science DivisionArgonne National Laboratory Lemont Illinois
  3. Baker Hughes a GE Company Firenze Italy
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1602350
Grant/Contract Number:  
[AC02-06CH11357; DOE LAB 17-1697]
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Applied Stochastic Models in Business and Industry
Additional Journal Information:
[Journal Name: Applied Stochastic Models in Business and Industry]; Journal ID: ISSN 1524-1904
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Huang, Jiangeng, Gramacy, Robert B., Binois, Mickaël, and Libraschi, Mirko. On‐site surrogates for large‐scale calibration. United Kingdom: N. p., 2020. Web. doi:10.1002/asmb.2523.
Huang, Jiangeng, Gramacy, Robert B., Binois, Mickaël, & Libraschi, Mirko. On‐site surrogates for large‐scale calibration. United Kingdom. doi:10.1002/asmb.2523.
Huang, Jiangeng, Gramacy, Robert B., Binois, Mickaël, and Libraschi, Mirko. Mon . "On‐site surrogates for large‐scale calibration". United Kingdom. doi:10.1002/asmb.2523.
@article{osti_1602350,
title = {On‐site surrogates for large‐scale calibration},
author = {Huang, Jiangeng and Gramacy, Robert B. and Binois, Mickaël and Libraschi, Mirko},
abstractNote = {},
doi = {10.1002/asmb.2523},
journal = {Applied Stochastic Models in Business and Industry},
number = ,
volume = ,
place = {United Kingdom},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 2, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Diagnostics for Gaussian Process Emulators
journal, November 2009


A Comparison of Rotordynamic-Coefficient Predictions for Annular Honeycomb Gas Seals Using Three Different Friction-Factor Models
journal, May 2002

  • D’Souza, Rohan J.; Childs, Dara W.
  • Journal of Tribology, Vol. 124, Issue 3
  • DOI: 10.1115/1.1456086

A Bulk-Flow Theory for Turbulence in Lubricant Films
journal, April 1973

  • Hirs, G. G.
  • Journal of Lubrication Technology, Vol. 95, Issue 2
  • DOI: 10.1115/1.3451752

The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals
journal, October 1997

  • Kleynhans, G. F.; Childs, D. W.
  • Journal of Engineering for Gas Turbines and Power, Vol. 119, Issue 4
  • DOI: 10.1115/1.2817079

Bayesian Calibration of Inexact Computer Models
journal, July 2016


Modularization in Bayesian analysis, with emphasis on analysis of computer models
journal, March 2009

  • Liu, F.; Bayarri, M. J.; Berger, J. O.
  • Bayesian Analysis, Vol. 4, Issue 1
  • DOI: 10.1214/09-BA404

Bayesian calibration of computer models
journal, August 2001

  • Kennedy, Marc C.; O'Hagan, Anthony
  • Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 63, Issue 3
  • DOI: 10.1111/1467-9868.00294

Algorithm 909: NOMAD: Nonlinear Optimization with the MADS Algorithm
journal, February 2011


Practical Heteroscedastic Gaussian Process Modeling for Large Simulation Experiments
journal, July 2018

  • Binois, Mickaël; Gramacy, Robert B.; Ludkovski, Mike
  • Journal of Computational and Graphical Statistics, Vol. 27, Issue 4
  • DOI: 10.1080/10618600.2018.1458625

Composite Gaussian process models for emulating expensive functions
journal, December 2012

  • Ba, Shan; Joseph, V. Roshan
  • The Annals of Applied Statistics, Vol. 6, Issue 4
  • DOI: 10.1214/12-AOAS570

Calibrating a large computer experiment simulating radiative shock hydrodynamics
journal, September 2015

  • Gramacy, Robert B.; Bingham, Derek; Holloway, James Paul
  • The Annals of Applied Statistics, Vol. 9, Issue 3
  • DOI: 10.1214/15-AOAS850

Exploratory designs for computational experiments
journal, February 1995


Combining Field Data and Computer Simulations for Calibration and Prediction
journal, January 2004

  • Higdon, Dave; Kennedy, Marc; Cavendish, James C.
  • SIAM Journal on Scientific Computing, Vol. 26, Issue 2
  • DOI: 10.1137/S1064827503426693

laGP : Large-Scale Spatial Modeling via Local Approximate Gaussian Processes in R
journal, January 2016


Sampling-Based Approaches to Calculating Marginal Densities
journal, June 1990


Design and Analysis of Computer Experiments
journal, November 1989

  • Sacks, Jerome; Welch, William J.; Mitchell, Toby J.
  • Statistical Science, Vol. 4, Issue 4
  • DOI: 10.1214/ss/1177012413

Cases for the nugget in modeling computer experiments
journal, December 2010


Uncertainty quantification of machining simulations using an in situ emulator
journal, July 2018


Local Gaussian Process Approximation for Large Computer Experiments
journal, April 2015

  • Gramacy, Robert B.; Apley, Daniel W.
  • Journal of Computational and Graphical Statistics, Vol. 24, Issue 2
  • DOI: 10.1080/10618600.2014.914442

Replication or Exploration? Sequential Design for Stochastic Simulation Experiments
journal, September 2018


Constructing and fitting models for cokriging and multivariable spatial prediction
journal, June 1998

  • Ver Hoef, Jay M.; Barry, Ronald Paul
  • Journal of Statistical Planning and Inference, Vol. 69, Issue 2, p. 275-294
  • DOI: 10.1016/S0378-3758(97)00162-6

Modeling Nonstationary Processes Through Dimension Expansion
journal, March 2012

  • Bornn, Luke; Shaddick, Gavin; Zidek, James V.
  • Journal of the American Statistical Association, Vol. 107, Issue 497
  • DOI: 10.1080/01621459.2011.646919

Efficient calibration for imperfect computer models
journal, December 2015

  • Tuo, Rui; Wu, C. F. Jeff
  • The Annals of Statistics, Vol. 43, Issue 6
  • DOI: 10.1214/15-AOS1314

Monte Carlo sampling methods using Markov chains and their applications
journal, April 1970