skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physics-Informed Neural Networks for Cardiac Activation Mapping

; ; ; ;
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Resource Type:
Published Article
Journal Name:
Frontiers in Physics
Additional Journal Information:
Journal Name: Frontiers in Physics Journal Volume: 8; Journal ID: ISSN 2296-424X
Frontiers Media SA
Country of Publication:

Citation Formats

Sahli Costabal, Francisco, Yang, Yibo, Perdikaris, Paris, Hurtado, Daniel E., and Kuhl, Ellen. Physics-Informed Neural Networks for Cardiac Activation Mapping. Switzerland: N. p., 2020. Web. doi:10.3389/fphy.2020.00042.
Sahli Costabal, Francisco, Yang, Yibo, Perdikaris, Paris, Hurtado, Daniel E., & Kuhl, Ellen. Physics-Informed Neural Networks for Cardiac Activation Mapping. Switzerland. doi:
Sahli Costabal, Francisco, Yang, Yibo, Perdikaris, Paris, Hurtado, Daniel E., and Kuhl, Ellen. Fri . "Physics-Informed Neural Networks for Cardiac Activation Mapping". Switzerland. doi:
title = {Physics-Informed Neural Networks for Cardiac Activation Mapping},
author = {Sahli Costabal, Francisco and Yang, Yibo and Perdikaris, Paris and Hurtado, Daniel E. and Kuhl, Ellen},
abstractNote = {},
doi = {10.3389/fphy.2020.00042},
journal = {Frontiers in Physics},
number = ,
volume = 8,
place = {Switzerland},
year = {2020},
month = {2}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Active Learning with Statistical Models
journal, January 1996

  • Cohn, D. A.; Ghahramani, Z.; Jordan, M. I.
  • Journal of Artificial Intelligence Research, Vol. 4
  • DOI: 10.1613/jair.295

Inverse localization of earliest cardiac activation sites from activation maps based on the viscous Eikonal equation
journal, August 2019

Probabilistic Interpolation of Uncertain Local Activation Times on Human Atrial Manifolds
journal, January 2020

  • Coveney, Sam; Clayton, Richard H.; Corrado, Cesare
  • IEEE Transactions on Biomedical Engineering, Vol. 67, Issue 1
  • DOI: 10.1109/TBME.2019.2908486

Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
journal, October 2019

  • Zhu, Yinhao; Zabaras, Nicholas; Koutsourelakis, Phaedon-Stelios
  • Journal of Computational Physics, Vol. 394
  • DOI: 10.1016/

On the limited memory BFGS method for large scale optimization
journal, August 1989

  • Liu, Dong C.; Nocedal, Jorge
  • Mathematical Programming, Vol. 45, Issue 1-3
  • DOI: 10.1007/BF01589116

On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other
journal, March 1947

Multi-fidelity classification using Gaussian processes: Accelerating the prediction of large-scale computational models
journal, December 2019

  • Sahli Costabal, Francisco; Perdikaris, Paris; Kuhl, Ellen
  • Computer Methods in Applied Mechanics and Engineering, Vol. 357
  • DOI: 10.1016/j.cma.2019.112602

Individual Comparisons by Ranking Methods
journal, December 1945

  • Wilcoxon, Frank
  • Biometrics Bulletin, Vol. 1, Issue 6
  • DOI: 10.2307/3001968

Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification
journal, May 2019

  • Sahli Costabal, Francisco; Matsuno, Kristen; Yao, Jiang
  • Computer Methods in Applied Mechanics and Engineering, Vol. 348
  • DOI: 10.1016/j.cma.2019.01.033

Interpreting Activation Mapping of Atrial Fibrillation: A Hybrid Computational/Physiological Study
journal, December 2017

  • Sahli Costabal, Francisco; Zaman, Junaid A. B.; Kuhl, Ellen
  • Annals of Biomedical Engineering, Vol. 46, Issue 2
  • DOI: 10.1007/s10439-017-1969-3

Artificial neural networks for solving ordinary and partial differential equations
journal, January 1998

  • Lagaris, I. E.; Likas, A.; Fotiadis, D. I.
  • IEEE Transactions on Neural Networks, Vol. 9, Issue 5
  • DOI: 10.1109/72.712178

Local activation time sampling density for atrial tachycardia contact mapping: how much is enough?
journal, April 2017

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
journal, February 2019

Fast uncertainty quantification of activation sequences in patient-specific cardiac electrophysiology meeting clinical time constraints: Fast uncertainty quantification in cardiac electrophysiology
journal, April 2018

  • Quaglino, A.; Pezzuto, S.; Koutsourelakis, P. S.
  • International Journal for Numerical Methods in Biomedical Engineering, Vol. 34, Issue 7
  • DOI: 10.1002/cnm.2985

Estimating mutual information
journal, June 2004

Adversarial uncertainty quantification in physics-informed neural networks
journal, October 2019

A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models
journal, May 2012

A technique for measuring anisotropy in atrial conduction to estimate conduction velocity and atrial fibre direction
journal, January 2019

Automatic reconstruction of activation and velocity maps from electro-anatomic data by radial basis functions
conference, August 2010

  • Masè, M.; Ravelli, F.
  • 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
  • DOI: 10.1109/IEMBS.2010.5626616

Generating fibre orientation maps in human heart models using Poisson interpolation
journal, November 2012

  • Wong, Jonathan; Kuhl, Ellen
  • Computer Methods in Biomechanics and Biomedical Engineering, Vol. 17, Issue 11
  • DOI: 10.1080/10255842.2012.739167

Generating Purkinje networks in the human heart
journal, August 2016

An eikonal-diffusion solver and its application to the interpolation and the simulation of reentrant cardiac activations
journal, November 2012

Automatic mapping of atrial fiber orientations for patient‐specific modeling of cardiac electromechanics using image registration
journal, March 2019

  • Hoermann, Julia M.; Pfaller, Martin R.; Avena, Linda
  • International Journal for Numerical Methods in Biomedical Engineering
  • DOI: 10.1002/cnm.3190

Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences
journal, November 2019

  • Alber, Mark; Buganza Tepole, Adrian; Cannon, William R.
  • npj Digital Medicine, Vol. 2, Issue 1
  • DOI: 10.1038/s41746-019-0193-y

cbcbeat: an adjoint-enabled framework for computational cardiac electrophysiology
journal, May 2017

  • E. Rognes, Marie; E. Farrell, Patrick; W. Funke, Simon
  • The Journal of Open Source Software, Vol. 2, Issue 13
  • DOI: 10.21105/joss.00224

The importance of mechano-electrical feedback and inertia in cardiac electromechanics
journal, June 2017

  • Sahli Costabal, Francisco; Concha, Felipe A.; Hurtado, Daniel E.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 320
  • DOI: 10.1016/j.cma.2017.03.015

Evaluation of a Rapid Anisotropic Model for ECG Simulation
journal, May 2017

Large Sample Properties of Simulations Using Latin Hypercube Sampling
journal, May 1987

Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation
journal, March 1998

  • Fenton, Flavio; Karma, Alain
  • Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 8, Issue 1
  • DOI: 10.1063/1.166311

Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes
journal, July 2019