DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations

Journal Article · · Science

For centuries, flow visualization has been the art of making fluid motion visible in physical and biological systems. Although such flow patterns can be, in principle, described by the Navier-Stokes equations, extracting the velocity and pressure fields directly from the images is challenging. Here, we addressed this problem by developing hidden fluid mechanics (HFM), a physics-informed deep-learning framework capable of encoding the Navier-Stokes equations into the neural networks while being agnostic to the geometry or the initial and boundary conditions. We demonstrate HFM for several physical and biomedical problems by extracting quantitative information for which direct measurements may not be possible. HFM is robust to low resolution and substantial noise in the observation data, which is important for potential applications.

Research Organization:
Brown Univ., Providence, RI (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
Grant/Contract Number:
SC0019453; AC05-76RL01830
OSTI ID:
1601918
Alternate ID(s):
OSTI ID: 2281994
Journal Information:
Science, Vol. 367, Issue 6481; ISSN 0036-8075
Publisher:
AAASCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 654 works
Citation information provided by
Web of Science

References (23)

Wall Shear Stress and Early Atherosclerosis: A Review journal June 2000
The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings journal May 1997
An Introduction to Fluid Dynamics book June 2012
A Survey on Transfer Learning journal October 2010
Outflow Boundary Conditions for Arterial Networks with Multiple Outlets journal July 2008
Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: Comparison with computational fluid dynamics journal February 2009
Inflammation, Atherosclerosis, and Coronary Artery Disease journal April 2005
A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping journal January 2012
Laser-induced fluorescence measurements of mixed fluid concentrationin a liquid plane shear layer journal November 1985
Coronary Atherosclerosis Imaging by Coronary CT Angiography journal May 2011
Three-dimensional dynamics and transition to turbulence in the wake of bluff objects journal May 1992
Microscale 3D flow mapping with μDDPIV journal February 2007
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations journal February 2019
Planar laser induced fluorescence in aqueous flows journal April 2008
An Album of Fluid Motion journal December 1982
Convection and flow in porous media. Part 1. Visualization by magnetic resonance imaging journal February 1997
Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients journal March 2002
Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI journal April 2007
A low-dimensional model for simulating three-dimensional cylinder flow journal May 2002
On the Correlation of Parity and Small-Depth Circuits journal January 2014
Approximation by superpositions of a sigmoidal function journal December 1989
Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. journal October 1983
Data-driven discovery of partial differential equations journal April 2017