skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on February 25, 2021

Title: Feature‐shared adaptive‐boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images

Authors:
 [1];  [2];  [3];  [1];  [2];  [4];  [2];  [1]
  1. School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240China
  2. Medical Imaging Department Jinhua Municipal Central Hospital Jinhua 321001China
  3. College of Computer Science and Technology Zhejiang University Hangzhou 310027China
  4. Changzhou Industrial Technology Research Institute of Zhejiang University Changzhou 213022China
Publication Date:
Sponsoring Org.:
USDOE Office of Electricity Delivery and Energy Reliability (OE), Power Systems Engineering Research and Development (R&D) (OE-10)
OSTI Identifier:
1601916
Grant/Contract Number:  
2018YFC0116402,
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Medical Physics
Additional Journal Information:
Journal Name: Medical Physics; Journal ID: ISSN 0094-2405
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United States
Language:
English

Citation Formats

Wang, Jun, Chen, Xiaorong, Lu, Hongbing, Zhang, Lichi, Pan, Jianfeng, Bao, Yong, Su, Jiner, and Qian, Dahong. Feature‐shared adaptive‐boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images. United States: N. p., 2020. Web. doi:10.1002/mp.14068.
Wang, Jun, Chen, Xiaorong, Lu, Hongbing, Zhang, Lichi, Pan, Jianfeng, Bao, Yong, Su, Jiner, & Qian, Dahong. Feature‐shared adaptive‐boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images. United States. doi:10.1002/mp.14068.
Wang, Jun, Chen, Xiaorong, Lu, Hongbing, Zhang, Lichi, Pan, Jianfeng, Bao, Yong, Su, Jiner, and Qian, Dahong. Wed . "Feature‐shared adaptive‐boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images". United States. doi:10.1002/mp.14068.
@article{osti_1601916,
title = {Feature‐shared adaptive‐boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images},
author = {Wang, Jun and Chen, Xiaorong and Lu, Hongbing and Zhang, Lichi and Pan, Jianfeng and Bao, Yong and Su, Jiner and Qian, Dahong},
abstractNote = {},
doi = {10.1002/mp.14068},
journal = {Medical Physics},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on February 25, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Boosting a Weak Learning Algorithm by Majority
journal, September 1995


A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images
journal, January 2016

  • Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Dutta, Anirvan
  • Journal of Digital Imaging, Vol. 29, Issue 4
  • DOI: 10.1007/s10278-015-9857-6

Computer-Aided Diagnosis of Ground-Glass Opacity Nodules Using Open-Source Software for Quantifying Tumor Heterogeneity
journal, December 2017

  • Li, Ming; Narayan, Vivek; Gill, Ritu R.
  • American Journal of Roentgenology, Vol. 209, Issue 6
  • DOI: 10.2214/AJR.17.17857

An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification
journal, August 2019


A collaborative computer aided diagnosis (C-CAD) system with eye-tracking, sparse attentional model, and deep learning
journal, January 2019


Simplifying decision trees
journal, September 1987


Knowledge-based Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT
journal, April 2019

  • Xie, Yutong; Xia, Yong; Zhang, Jianpeng
  • IEEE Transactions on Medical Imaging, Vol. 38, Issue 4
  • DOI: 10.1109/TMI.2018.2876510

Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
journal, September 2018

  • Bray, Freddie; Ferlay, Jacques; Soerjomataram, Isabelle
  • CA: A Cancer Journal for Clinicians, Vol. 68, Issue 6
  • DOI: 10.3322/caac.21492

Stratified learning of local anatomical context for lung nodules in CT images
conference, June 2010

  • Wu, Dijia; Lu, Le; Bi, Jinbo
  • 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
  • DOI: 10.1109/CVPR.2010.5540008

A Novel Approach for Lung Nodules Segmentation in Chest CT Using Level Sets
journal, December 2013

  • Farag, Amal A.; El Munim, Hossam E. Abd; Graham, James H.
  • IEEE Transactions on Image Processing, Vol. 22, Issue 12
  • DOI: 10.1109/TIP.2013.2282899

A novel shape-based diagnostic approach for early diagnosis of lung nodules
conference, March 2011

  • El-Baz, A.; Nitzken, M.; Vanbogaert, E.
  • 2011 8th IEEE International Symposium on Biomedical Imaging (ISBI 2011), 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
  • DOI: 10.1109/ISBI.2011.5872373

A fuzzy K-nearest neighbor algorithm
journal, July 1985

  • Keller, James M.; Gray, Michael R.; Givens, James A.
  • IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-15, Issue 4
  • DOI: 10.1109/TSMC.1985.6313426

A new computationally efficient CAD system for pulmonary nodule detection in CT imagery
journal, June 2010


Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017
journal, July 2017


Automatic Scoring of Multiple Semantic Attributes With Multi-Task Feature Leverage: A Study on Pulmonary Nodules in CT Images
journal, March 2017

  • Chen, Sihong; Qin, Jing; Ji, Xing
  • IEEE Transactions on Medical Imaging, Vol. 36, Issue 3
  • DOI: 10.1109/TMI.2016.2629462

Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules
journal, August 2014


Attention Residual Learning for Skin Lesion Classification
journal, September 2019

  • Zhang, Jianpeng; Xie, Yutong; Xia, Yong
  • IEEE Transactions on Medical Imaging, Vol. 38, Issue 9
  • DOI: 10.1109/TMI.2019.2893944

A deep learning-based multi-model ensemble method for cancer prediction
journal, January 2018


Support-vector networks
journal, September 1995

  • Cortes, Corinna; Vapnik, Vladimir
  • Machine Learning, Vol. 20, Issue 3
  • DOI: 10.1007/BF00994018

Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification
journal, January 2017


Deep Residual Learning for Image Recognition
conference, June 2016

  • He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing
  • 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  • DOI: 10.1109/CVPR.2016.90

Computational Radiomics System to Decode the Radiographic Phenotype
journal, October 2017


Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis
journal, December 2011

  • Diciotti, S.; Lombardo, S.; Falchini, M.
  • IEEE Transactions on Biomedical Engineering, Vol. 58, Issue 12
  • DOI: 10.1109/TBME.2011.2167621

Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans
journal, January 2015


Weighted random sampling with a reservoir
journal, March 2006


Lung Lesion Extraction Using a Toboggan Based Growing Automatic Segmentation Approach
journal, January 2016


Rethinking the Inception Architecture for Computer Vision
conference, June 2016

  • Szegedy, Christian; Vanhoucke, Vincent; Ioffe, Sergey
  • 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  • DOI: 10.1109/CVPR.2016.308

DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification
conference, March 2018

  • Zhu, Wentao; Liu, Chaochun; Fan, Wei
  • 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
  • DOI: 10.1109/WACV.2018.00079

Ensemble of convolutional neural networks for bioimage classification
journal, June 2018


machine.
journal, October 2001


Accurate Lungs Segmentation on CT Chest Images by Adaptive Appearance-Guided Shape Modeling
journal, January 2017

  • Soliman, Ahmed; Khalifa, Fahmi; Elnakib, Ahmed
  • IEEE Transactions on Medical Imaging, Vol. 36, Issue 1
  • DOI: 10.1109/TMI.2016.2606370

Feature Pyramid Networks for Object Detection
conference, July 2017

  • Lin, Tsung-Yi; Dollar, Piotr; Girshick, Ross
  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  • DOI: 10.1109/CVPR.2017.106

3D convolutional neural network for differentiating pre-invasive lesions from invasive adenocarcinomas appearing as ground-glass nodules with diameters ≤3 cm using HRCT
journal, June 2018

  • Wang, Shengping; Wang, Rui; Zhang, Shengjian
  • Quantitative Imaging in Medicine and Surgery, Vol. 8, Issue 5
  • DOI: 10.21037/qims.2018.06.03