skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbene-based Difluoromethylation of Bisphenols: Application to the Instantaneous Tagging of Bisphenol A in Spiked Soil for Its Detection and Identification by Electron Ionization Gas Chromatography-Mass Spectrometry

Abstract

The rapid and efficient difluoromethylation of a panel of eleven bisphenols (BPs) for their enhanced detection and identification by Electron-Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS) is presented. The derivatization employs the inexpensive, environmentally benign agent diethyl (bromodifluoromethyl) phosphonate (DBDFP) as a difluorocarbene-generating species that converts the BPs into bis-difluoromethylated ethers that can be detected and identified by GC-MS means. Key attributes of the protocol include its extreme rapidity (30 seconds) at ambient temperature, high specificity for BPs amidst other alcohol-containing analytes, and its biphasic nature that allows for its convenient adaptation to the analysis of BPs in organic as well as aqueous matrices. The protocol furnishes stable, novel BP ethers armed with a total of four fluorine atoms for their subsequent analysis by EI-GC-MS. Furthermore, each derivatized bisphenol exhibits unique retention times vastly different from their native counterparts leading to their unequivocal identification. The effectiveness and robustness of the developed methodology was applied to the tagging of the most famous member of this family of compounds, bisphenol-A (BPA), when spiked (at 1 μg.g –1 concentration) in the physically and compositionally complex Nebraska EPA standard soil. The method detection limit (MDL) for the bis-difluoromethylated BPA was determined to be 0.01 μg.mL –1.more » The bis-difluoromethylated BPA was conveniently detected on the organic layers from the biphasic, derivatized mixtures, highlighting the protocol’s practicality and utility in the rapid, qualitative detection of this endocrine disruptor during environmental analysis.« less

Authors:
 [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1601564
Report Number(s):
[LLNL-JRNL-779157]
[Journal ID: ISSN 2045-2322; 972724]
Grant/Contract Number:  
[AC52-07NA27344]
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
[ Journal Volume: 9; Journal Issue: 1]; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; bisphenol; bisphenol A; GC-MS; difluoromethylation; endocrine disruptor

Citation Formats

Valdez, Carlos A., Leif, Roald N., and Hok, Saphon. Carbene-based Difluoromethylation of Bisphenols: Application to the Instantaneous Tagging of Bisphenol A in Spiked Soil for Its Detection and Identification by Electron Ionization Gas Chromatography-Mass Spectrometry. United States: N. p., 2019. Web. doi:10.1038/s41598-019-53735-9.
Valdez, Carlos A., Leif, Roald N., & Hok, Saphon. Carbene-based Difluoromethylation of Bisphenols: Application to the Instantaneous Tagging of Bisphenol A in Spiked Soil for Its Detection and Identification by Electron Ionization Gas Chromatography-Mass Spectrometry. United States. doi:10.1038/s41598-019-53735-9.
Valdez, Carlos A., Leif, Roald N., and Hok, Saphon. Fri . "Carbene-based Difluoromethylation of Bisphenols: Application to the Instantaneous Tagging of Bisphenol A in Spiked Soil for Its Detection and Identification by Electron Ionization Gas Chromatography-Mass Spectrometry". United States. doi:10.1038/s41598-019-53735-9. https://www.osti.gov/servlets/purl/1601564.
@article{osti_1601564,
title = {Carbene-based Difluoromethylation of Bisphenols: Application to the Instantaneous Tagging of Bisphenol A in Spiked Soil for Its Detection and Identification by Electron Ionization Gas Chromatography-Mass Spectrometry},
author = {Valdez, Carlos A. and Leif, Roald N. and Hok, Saphon},
abstractNote = {The rapid and efficient difluoromethylation of a panel of eleven bisphenols (BPs) for their enhanced detection and identification by Electron-Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS) is presented. The derivatization employs the inexpensive, environmentally benign agent diethyl (bromodifluoromethyl) phosphonate (DBDFP) as a difluorocarbene-generating species that converts the BPs into bis-difluoromethylated ethers that can be detected and identified by GC-MS means. Key attributes of the protocol include its extreme rapidity (30 seconds) at ambient temperature, high specificity for BPs amidst other alcohol-containing analytes, and its biphasic nature that allows for its convenient adaptation to the analysis of BPs in organic as well as aqueous matrices. The protocol furnishes stable, novel BP ethers armed with a total of four fluorine atoms for their subsequent analysis by EI-GC-MS. Furthermore, each derivatized bisphenol exhibits unique retention times vastly different from their native counterparts leading to their unequivocal identification. The effectiveness and robustness of the developed methodology was applied to the tagging of the most famous member of this family of compounds, bisphenol-A (BPA), when spiked (at 1 μg.g–1 concentration) in the physically and compositionally complex Nebraska EPA standard soil. The method detection limit (MDL) for the bis-difluoromethylated BPA was determined to be 0.01 μg.mL–1. The bis-difluoromethylated BPA was conveniently detected on the organic layers from the biphasic, derivatized mixtures, highlighting the protocol’s practicality and utility in the rapid, qualitative detection of this endocrine disruptor during environmental analysis.},
doi = {10.1038/s41598-019-53735-9},
journal = {Scientific Reports},
number = [1],
volume = [9],
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Bisphenol A and human health: A review of the literature
journal, December 2013


Bisphenol-A and the Great Divide: A Review of Controversies in the Field of Endocrine Disruption
journal, February 2009

  • Vandenberg, Laura N.; Maffini, Maricel V.; Sonnenschein, Carlos
  • Endocrine Reviews, Vol. 30, Issue 1
  • DOI: 10.1210/er.2008-0021

Water Analysis: Emerging Contaminants and Current Issues
journal, June 2009

  • Richardson, Susan D.
  • Analytical Chemistry, Vol. 81, Issue 12, p. 4645-4677
  • DOI: 10.1021/ac9008012