DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Geometrothermodynamics in planar artificial spin ices

Abstract

In this work, we explore a kind of geometrical effect in the thermodynamics of artificial spin ices (ASI). In general, such artificial materials are athermal. Here, We demonstrate that geometrically driven dynamics in ASI can open up the panorama of exploring distinct ground states and thermally magnetic monopole excitations. It is shown that a particular ASI lattice will provide a richer thermodynamics with nanomagnet spins experiencing less restriction to flip precisely in a kind of rhombic lattice. This can be observed by analysis of only three types of rectangular artificial spin ices (RASI). Denoting the horizontal and vertical lattice spacings by $$a$$ and $$b$$, respectively, then, a RASI material can be described by its aspect ratio $$γ \equiv a/b$$ . The rhombic lattice emerges when $$γ = \sqrt{3}$$. So, by comparing the impact of thermal effects on the spin flips in these three appropriate different RASI arrays, it is possible to find a system very close to the ice regime.

Authors:
 [1]; ORCiD logo [2];  [3];  [4];  [5];  [1];  [1]
  1. Univ. Federal de Vicosa (Brazil)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Univ. Federal de Ouro Preto (Brazil)
  4. International Iberian Nanotechnology Lab. (Portugal)
  5. Lab. Nacional de Luz Sincrotron (Brazil)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1601390
Report Number(s):
LA-UR-17-29335
Journal ID: ISSN 0953-8984; TRN: US2103632
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. Condensed Matter
Additional Journal Information:
Journal Volume: 31; Journal Issue: 2; Journal ID: ISSN 0953-8984
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Loreto, PR, Nisoli, Cristiano, Nascimento, FS, Borme, J, Cezar, JC, Pereira, AR, and Araujo, CIL. Geometrothermodynamics in planar artificial spin ices. United States: N. p., 2019. Web. doi:10.1088/1361-648X/aaeeef.
Loreto, PR, Nisoli, Cristiano, Nascimento, FS, Borme, J, Cezar, JC, Pereira, AR, & Araujo, CIL. Geometrothermodynamics in planar artificial spin ices. United States. https://doi.org/10.1088/1361-648X/aaeeef
Loreto, PR, Nisoli, Cristiano, Nascimento, FS, Borme, J, Cezar, JC, Pereira, AR, and Araujo, CIL. Wed . "Geometrothermodynamics in planar artificial spin ices". United States. https://doi.org/10.1088/1361-648X/aaeeef. https://www.osti.gov/servlets/purl/1601390.
@article{osti_1601390,
title = {Geometrothermodynamics in planar artificial spin ices},
author = {Loreto, PR and Nisoli, Cristiano and Nascimento, FS and Borme, J and Cezar, JC and Pereira, AR and Araujo, CIL},
abstractNote = {In this work, we explore a kind of geometrical effect in the thermodynamics of artificial spin ices (ASI). In general, such artificial materials are athermal. Here, We demonstrate that geometrically driven dynamics in ASI can open up the panorama of exploring distinct ground states and thermally magnetic monopole excitations. It is shown that a particular ASI lattice will provide a richer thermodynamics with nanomagnet spins experiencing less restriction to flip precisely in a kind of rhombic lattice. This can be observed by analysis of only three types of rectangular artificial spin ices (RASI). Denoting the horizontal and vertical lattice spacings by $a$ and $b$, respectively, then, a RASI material can be described by its aspect ratio $γ \equiv a/b$ . The rhombic lattice emerges when $γ = \sqrt{3}$. So, by comparing the impact of thermal effects on the spin flips in these three appropriate different RASI arrays, it is possible to find a system very close to the ice regime.},
doi = {10.1088/1361-648X/aaeeef},
journal = {Journal of Physics. Condensed Matter},
number = 2,
volume = 31,
place = {United States},
year = {Wed Jan 16 00:00:00 EST 2019},
month = {Wed Jan 16 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermal string excitations in artificial spin-ice square dipolar arrays
journal, June 2014


Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands
journal, January 2006

  • Wang, R. F.; Nisoli, C.; Freitas, R. S.
  • Nature, Vol. 439, Issue 7074
  • DOI: 10.1038/nature04447

Thermal fluctuations in artificial spin ice
journal, June 2014

  • Kapaklis, Vassilios; Arnalds, Unnar B.; Farhan, Alan
  • Nature Nanotechnology, Vol. 9, Issue 7, p. 514-519
  • DOI: 10.1038/nnano.2014.104

Thermally induced magnetic relaxation in square artificial spin ice
journal, November 2016

  • Andersson, M. S.; Pappas, S. D.; Stopfel, H.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep37097

Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands
journal, March 2007

  • Wang, R. F.; Nisoli, C.; Freitas, R. S.
  • Nature, Vol. 446, Issue 7131
  • DOI: 10.1038/nature05607

Magnetic monopole and string excitations in two-dimensional spin ice
journal, September 2009

  • Mól, L. A.; Silva, R. L.; Silva, R. C.
  • Journal of Applied Physics, Vol. 106, Issue 6
  • DOI: 10.1063/1.3224870

Thermodynamics of elementary excitations in artificial magnetic square ice
journal, January 2012


Strings, monopoles, and gauge fields
journal, December 1974


Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology
journal, October 2017


Thermal ground-state ordering and elementary excitations in artificial magnetic square ice
journal, November 2010

  • Morgan, Jason P.; Stein, Aaron; Langridge, Sean
  • Nature Physics, Vol. 7, Issue 1
  • DOI: 10.1038/nphys1853

Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems
journal, May 2013

  • Farhan, A.; Derlet, P. M.; Kleibert, A.
  • Nature Physics, Vol. 9, Issue 6
  • DOI: 10.1038/nphys2613

Melting artificial spin ice
journal, March 2012


From confinement to deconfinement of magnetic monopoles in artificial rectangular spin ices
journal, November 2012


Direct Observation of Thermal Relaxation in Artificial Spin Ice
journal, August 2013


Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice
journal, November 2016

  • Perrin, Yann; Canals, Benjamin; Rougemaille, Nicolas
  • Nature, Vol. 540, Issue 7633
  • DOI: 10.1038/nature20155

Melting artificial spin ice
text, January 2011


Thermodynamics of elementary excitations in artificial magnetic square ice
text, January 2011


Thermally induced magnetic relaxation in square artificial spin ice
text, January 2016


Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology
text, January 2017


Artificial square ice and related dipolar nanoarrays
text, January 2006


Works referencing / citing this record:

Dipolar Cairo lattice: Geometrical frustration and short-range correlations
journal, October 2019


Advances in artificial spin ice
journal, November 2019

  • Skjærvø, Sandra H.; Marrows, Christopher H.; Stamps, Robert L.
  • Nature Reviews Physics, Vol. 2, Issue 1
  • DOI: 10.1038/s42254-019-0118-3

Tuning magnetic monopole population and mobility in unidirectional array of nanomagnets as a function of lattice parameters
journal, April 2019

  • Gonçalves, R. S.; Loreto, R. P.; de Paiva, T. S.
  • Applied Physics Letters, Vol. 114, Issue 14
  • DOI: 10.1063/1.5088219