skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities

Abstract

A central problem of solid polymer electrolytes is their inability to achieve robust mechanical strength with fast ionic conductivities required for commercialization of lithium metal batteries (LMBs). At present, state-of-the-art offers superiority of one at the expense of the other. Here, this dilemma has been solved by fabricating mechanically robust solid composite polymer electrolytes (SCPEs) with superior ionic conductivity (0.5 mS cm-1 at 20 °C) by confining ionic liquids (ILs) in the hollow scaffold offered by hollow silica (HS) nanospheres with unique architecture. Mechanical robustness was verified by the performance of a Li| |Li symmetric cell cycling for extended hours without short-circuiting. In addition, SCPEs with HS have higher thermal and electrochemical stabilities than those without HS, due to strong interaction and coordination of HS nanoparticles with polymer and ionic liquids. Electrode compatibility and flexibility of the membrane could advance the LMBs technology.

Authors:
 [1];  [2];  [3];  [2];  [1];  [3];  [4];  [3]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1601348
Alternate Identifier(s):
OSTI ID: 1562730
Report Number(s):
BNL-213643-2020-JAAM
Journal ID: ISSN 2566-6223
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Batteries & Supercaps
Additional Journal Information:
Journal Volume: 2; Journal Issue: 12; Journal ID: ISSN 2566-6223
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium metal batteries; solid composite electrolytes; poly(vinylidene fluoride-co-hexafluoropropylene); ionic liquids; hollow silica spheres

Citation Formats

Thapaliya, Bishnu P., Do‐Thanh, Chi‐Linh, Jafta, Charl J., Tao, Runming, Lyu, Hailong, Borisevich, Albina Y., Yang, Shi‐ze, Sun, Xiao‐Guang, and Dai, Sheng. Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities. United States: N. p., 2019. Web. https://doi.org/10.1002/batt.201900095.
Thapaliya, Bishnu P., Do‐Thanh, Chi‐Linh, Jafta, Charl J., Tao, Runming, Lyu, Hailong, Borisevich, Albina Y., Yang, Shi‐ze, Sun, Xiao‐Guang, & Dai, Sheng. Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities. United States. https://doi.org/10.1002/batt.201900095
Thapaliya, Bishnu P., Do‐Thanh, Chi‐Linh, Jafta, Charl J., Tao, Runming, Lyu, Hailong, Borisevich, Albina Y., Yang, Shi‐ze, Sun, Xiao‐Guang, and Dai, Sheng. Thu . "Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities". United States. https://doi.org/10.1002/batt.201900095. https://www.osti.gov/servlets/purl/1601348.
@article{osti_1601348,
title = {Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities},
author = {Thapaliya, Bishnu P. and Do‐Thanh, Chi‐Linh and Jafta, Charl J. and Tao, Runming and Lyu, Hailong and Borisevich, Albina Y. and Yang, Shi‐ze and Sun, Xiao‐Guang and Dai, Sheng},
abstractNote = {A central problem of solid polymer electrolytes is their inability to achieve robust mechanical strength with fast ionic conductivities required for commercialization of lithium metal batteries (LMBs). At present, state-of-the-art offers superiority of one at the expense of the other. Here, this dilemma has been solved by fabricating mechanically robust solid composite polymer electrolytes (SCPEs) with superior ionic conductivity (0.5 mS cm-1 at 20 °C) by confining ionic liquids (ILs) in the hollow scaffold offered by hollow silica (HS) nanospheres with unique architecture. Mechanical robustness was verified by the performance of a Li| |Li symmetric cell cycling for extended hours without short-circuiting. In addition, SCPEs with HS have higher thermal and electrochemical stabilities than those without HS, due to strong interaction and coordination of HS nanoparticles with polymer and ionic liquids. Electrode compatibility and flexibility of the membrane could advance the LMBs technology.},
doi = {10.1002/batt.201900095},
journal = {Batteries & Supercaps},
number = 12,
volume = 2,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ionic-liquid materials for the electrochemical challenges of the future
journal, July 2009

  • Armand, Michel; Endres, Frank; MacFarlane, Douglas R.
  • Nature Materials, Vol. 8, Issue 8, p. 621-629
  • DOI: 10.1038/nmat2448

Experimental trends in polymer nanocomposites—a review
journal, February 2005

  • Jordan, Jeffrey; Jacob, Karl I.; Tannenbaum, Rina
  • Materials Science and Engineering: A, Vol. 393, Issue 1-2
  • DOI: 10.1016/j.msea.2004.09.044

Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries
journal, July 2016

  • Zhang, Kai; Lee, Gi-Hyeok; Park, Mihui
  • Advanced Energy Materials, Vol. 6, Issue 20
  • DOI: 10.1002/aenm.201600811

Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries
journal, December 2016

  • Li, Yutao; Xu, Biyi; Xu, Henghui
  • Angewandte Chemie International Edition, Vol. 56, Issue 3
  • DOI: 10.1002/anie.201608924

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries
journal, January 2018

  • Tong, Yongfen; Lyu, Hailong; Xu, Yuzhong
  • Journal of Materials Chemistry A, Vol. 6, Issue 30
  • DOI: 10.1039/C8TA03062F

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature
journal, September 2016


Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries
journal, January 2017


Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application
journal, November 1982

  • Watanabe, Masayoshi; Kanba, Motoi; Nagaoka, Katsuro
  • Journal of Applied Polymer Science, Vol. 27, Issue 11
  • DOI: 10.1002/app.1982.070271110

Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Recent advances in solid polymer electrolytes for lithium batteries
journal, August 2017


Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries
journal, January 2018

  • Zekoll, Stefanie; Marriner-Edwards, Cassian; Hekselman, A. K. Ola
  • Energy & Environmental Science, Vol. 11, Issue 1
  • DOI: 10.1039/C7EE02723K

High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life
journal, October 2016


Novel composite polymer electrolyte for lithium air batteries
journal, February 2010


Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries
journal, January 2017

  • Chen, Nan; Dai, Yujuan; Xing, Yi
  • Energy & Environmental Science, Vol. 10, Issue 7
  • DOI: 10.1039/C7EE00988G

Ionogels, ionic liquid based hybrid materials
journal, January 2011

  • Le Bideau, Jean; Viau, Lydie; Vioux, André
  • Chem. Soc. Rev., Vol. 40, Issue 2
  • DOI: 10.1039/C0CS00059K

Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
journal, April 2019


Polymer-Nanoparticle Composites: From Synthesis to Modern Applications
journal, May 2010

  • Hanemann, Thomas; Szabó, Dorothée Vinga
  • Materials, Vol. 3, Issue 6
  • DOI: 10.3390/ma3063468

Correlating Electrode-Electrolyte Interface and Battery Performance in Hybrid Solid Polymer Electrolyte-Based Lithium Metal Batteries
journal, August 2017

  • Pan, Qiwei; Barbash, Dmitri; Smith, Derrick M.
  • Advanced Energy Materials, Vol. 7, Issue 22
  • DOI: 10.1002/aenm.201701231

Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers
journal, March 2015


Facile in Situ Syntheses of Cathode Protective Electrolyte Additives for High Energy Density Li-Ion Cells
journal, March 2019


Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
journal, June 2016

  • Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1600422113

Silica-based ionogel electrolyte with porous flower-like structure enables safer lithium ion battery
journal, August 2019


Poly(ionic liquid)-Derived N-Doped Carbons with Hierarchical Porosity for Lithium- and Sodium-Ion Batteries
journal, October 2018

  • Alkarmo, Walid; Ouhib, Farid; Aqil, Abdelhafid
  • Macromolecular Rapid Communications, Vol. 40, Issue 1
  • DOI: 10.1002/marc.201800545

Interphase Engineering Enabled All-Ceramic Lithium Battery
journal, March 2018


Phase Behavior of Ionic Liquid−LiX Mixtures:  Pyrrolidinium Cations and TFSI - Anions
journal, July 2004

  • Henderson, Wesley A.; Passerini, Stefano
  • Chemistry of Materials, Vol. 16, Issue 15
  • DOI: 10.1021/cm049942j

Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries
journal, August 2019


Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
journal, January 2017

  • Zhang, Heng; Li, Chunmei; Piszcz, Michal
  • Chemical Society Reviews, Vol. 46, Issue 3
  • DOI: 10.1039/C6CS00491A

Ion conducting polymer-silica hybrid ionogels obtained via non-aqueous sol-gel route
journal, November 2019


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Review on composite polymer electrolytes for lithium batteries
journal, July 2006


Nucleophilicity in Ionic Liquids. 2. 1 Cation Effects on Halide Nucleophilicity in a Series of Bis(trifluoromethylsulfonyl)imide Ionic Liquids
journal, December 2002

  • Lancaster, N. Llewellyn; Salter, Paul A.; Welton, Tom
  • The Journal of Organic Chemistry, Vol. 67, Issue 25
  • DOI: 10.1021/jo026113d

Polymer and composite electrolytes
journal, October 2018

  • Hallinan, Daniel T.; Villaluenga, Irune; Balsara, Nitash P.
  • MRS Bulletin, Vol. 43, Issue 10
  • DOI: 10.1557/mrs.2018.212

Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties
journal, January 2015

  • Shalu, Shalu; Singh, Varun Kumar; Singh, Rajendra Kumar
  • Journal of Materials Chemistry C, Vol. 3, Issue 28
  • DOI: 10.1039/C5TC00940E

Pyrrolidinium Imides:  A New Family of Molten Salts and Conductive Plastic Crystal Phases
journal, May 1999

  • MacFarlane, D. R.; Meakin, P.; Sun, J.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 20
  • DOI: 10.1021/jp984145s

Ion Dynamics in Ionic-Liquid-Based Li-Ion Electrolytes Investigated by Neutron Scattering and Dielectric Spectroscopy
journal, September 2018


Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures
journal, April 2015


A Structural Study on Ionic-Liquid-Based Polymer Electrolyte Membranes
journal, January 2007

  • Martinelli, A.; Matic, A.; Jacobsson, P.
  • Journal of The Electrochemical Society, Vol. 154, Issue 8
  • DOI: 10.1149/1.2745640

The Compensation Effect in the Vogel–Tammann–Fulcher (VTF) Equation for Polymer-Based Electrolytes
journal, May 2017


Porous Liquids: A Promising Class of Media for Gas Separation
journal, November 2014

  • Zhang, Jinshui; Chai, Song-Hai; Qiao, Zhen-An
  • Angewandte Chemie International Edition, Vol. 54, Issue 3
  • DOI: 10.1002/anie.201409420

Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries
journal, September 2013

  • Tu, Zhengyuan; Kambe, Yu; Lu, Yingying
  • Advanced Energy Materials, Vol. 4, Issue 2, Article No. 1300654
  • DOI: 10.1002/aenm.201300654

Synthesis and Lithium Ion Conduction of Polysiloxane Single-Ion Conductors Containing Novel Weak-Binding Borates
journal, June 2012

  • Liang, Siwei; Choi, U. Hyeok; Liu, Wenjuan
  • Chemistry of Materials, Vol. 24, Issue 12
  • DOI: 10.1021/cm3005387

Ionic liquids and derived materials for lithium and sodium batteries
journal, January 2018

  • Yang, Qiwei; Zhang, Zhaoqiang; Sun, Xiao-Guang
  • Chemical Society Reviews, Vol. 47, Issue 6
  • DOI: 10.1039/C7CS00464H

MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries
journal, January 2019

  • Wu, Jian-Fang; Guo, Xin
  • Journal of Materials Chemistry A, Vol. 7, Issue 6
  • DOI: 10.1039/C8TA10124H

The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids
journal, January 2007

  • Burrell, Anthony K.; Sesto, Rico E. Del; Baker, Sheila N.
  • Green Chemistry, Vol. 9, Issue 5
  • DOI: 10.1039/b615950h

Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

Fluorination of MXene by Elemental F 2 as Electrode Material for Lithium‐Ion Batteries
journal, March 2019

  • Thapaliya, Bishnu P.; Jafta, Charl J.; Lyu, Hailong
  • ChemSusChem, Vol. 12, Issue 7
  • DOI: 10.1002/cssc.201900003

High-performance polymeric ionic liquid–silica hybrid ionogel electrolytes for lithium metal batteries
journal, January 2016

  • Li, Xiaowei; Li, Sijian; Zhang, Zhengxi
  • Journal of Materials Chemistry A, Vol. 4, Issue 36
  • DOI: 10.1039/C6TA04767J

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Electrochemical investigations of ionic liquids with vinylene carbonate for applications in rechargeable lithium ion batteries
journal, June 2010


Constructing Robust Electrode/Electrolyte Interphases to Enable Wide Temperature Applications of Lithium-Ion Batteries
journal, May 2019

  • Liu, Bin; Li, Qiuyan; Engelhard, Mark H.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 24
  • DOI: 10.1021/acsami.9b03821

Aliphatic Polycarbonate-Based Solid-State Polymer Electrolytes for Advanced Lithium Batteries: Advances and Perspective
journal, August 2018


Gel polymer electrolytes based on PMMA
journal, April 2001


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Novel Composite Polymer Electrolytes of PVdF-HFP Derived by Electrospinning with Enhanced Li-Ion Conductivities for Rechargeable Lithium–Sulfur Batteries
journal, January 2018

  • M. Shanthi, Pavithra; J. Hanumantha, Prashanth; Albuquerque, Taciana
  • ACS Applied Energy Materials, Vol. 1, Issue 2
  • DOI: 10.1021/acsaem.7b00094

Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries
journal, October 2017


Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview
journal, October 2008


Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices
journal, January 2017


Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes
journal, January 2018

  • Chen, Shimou; Wen, Kaihua; Fan, Juntian
  • Journal of Materials Chemistry A, Vol. 6, Issue 25
  • DOI: 10.1039/C8TA03358G

A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Porous Liquids: A Promising Class of Media for Gas Separation
journal, November 2014

  • Zhang, Jinshui; Chai, Song-Hai; Qiao, Zhen-An
  • Angewandte Chemie, Vol. 127, Issue 3
  • DOI: 10.1002/ange.201409420

Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries
journal, December 2016


    Works referencing / citing this record: