skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on September 23, 2020

Title: Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons

Abstract

Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb 3+/Er 3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm -2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offersmore » prospects in previously unrealizable applications of coherent nanoscale light.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1];  [1];  [1]; ORCiD logo [2];  [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [5]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Molecular Foundry
  2. Northwestern Univ., Evanston, IL (United States). Graduate Program in Applied Physics
  3. Northwestern Univ., Evanston, IL (United States). Graduate Program in Applied Physics and Dept. of Chemistry
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Molecular Foundry; Columbia Univ., New York, NY (United States). Dept. of Mechanical Engineering
  5. Northwestern Univ., Evanston, IL (United States). Graduate Program in Applied Physics, Dept. of Materials Science and Engineering, and Dept. of Chemistry
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1601211
Grant/Contract Number:  
[AC02-05CH11231]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
[ Journal Volume: 18; Journal Issue: 11]; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 36 MATERIALS SCIENCE

Citation Formats

Fernandez-Bravo, Angel, Wang, Danqing, Barnard, Edward S., Teitelboim, Ayelet, Tajon, Cheryl, Guan, Jun, Schatz, George C., Cohen, Bruce E., Chan, Emory M., Schuck, P. James, and Odom, Teri W. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. United States: N. p., 2019. Web. doi:10.1038/s41563-019-0482-5.
Fernandez-Bravo, Angel, Wang, Danqing, Barnard, Edward S., Teitelboim, Ayelet, Tajon, Cheryl, Guan, Jun, Schatz, George C., Cohen, Bruce E., Chan, Emory M., Schuck, P. James, & Odom, Teri W. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. United States. doi:10.1038/s41563-019-0482-5.
Fernandez-Bravo, Angel, Wang, Danqing, Barnard, Edward S., Teitelboim, Ayelet, Tajon, Cheryl, Guan, Jun, Schatz, George C., Cohen, Bruce E., Chan, Emory M., Schuck, P. James, and Odom, Teri W. Mon . "Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons". United States. doi:10.1038/s41563-019-0482-5.
@article{osti_1601211,
title = {Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons},
author = {Fernandez-Bravo, Angel and Wang, Danqing and Barnard, Edward S. and Teitelboim, Ayelet and Tajon, Cheryl and Guan, Jun and Schatz, George C. and Cohen, Bruce E. and Chan, Emory M. and Schuck, P. James and Odom, Teri W.},
abstractNote = {Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb3+/Er3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm-2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offers prospects in previously unrealizable applications of coherent nanoscale light.},
doi = {10.1038/s41563-019-0482-5},
journal = {Nature Materials},
number = [11],
volume = [18],
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 23, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Advances in small lasers
journal, November 2014


Structural Engineering in Plasmon Nanolasers
journal, October 2017


Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy
journal, March 2017

  • Fan, Fengjia; Voznyy, Oleksandr; Sabatini, Randy P.
  • Nature, Vol. 544, Issue 7648
  • DOI: 10.1038/nature21424

Room-temperature continuous-wave lasing in GaN/InGaN microdisks
journal, December 2006

  • Tamboli, Adele C.; Haberer, Elaine D.; Sharma, Rajat
  • Nature Photonics, Vol. 1, Issue 1
  • DOI: 10.1038/nphoton.2006.52

Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices
journal, July 2017

  • Wang, Danqing; Yang, Ankun; Wang, Weijia
  • Nature Nanotechnology, Vol. 12, Issue 9
  • DOI: 10.1038/nnano.2017.126

Lasing action in strongly coupled plasmonic nanocavity arrays
journal, June 2013

  • Zhou, Wei; Dridi, Montacer; Suh, Jae Yong
  • Nature Nanotechnology, Vol. 8, Issue 7
  • DOI: 10.1038/nnano.2013.99

Plasmon lasers at deep subwavelength scale
journal, August 2009

  • Oulton, Rupert F.; Sorger, Volker J.; Zentgraf, Thomas
  • Nature, Vol. 461, Issue 7264
  • DOI: 10.1038/nature08364

Plasmonic Nanolaser Using Epitaxially Grown Silver Film
journal, July 2012


Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors
journal, April 2015

  • Zhu, Haiming; Fu, Yongping; Meng, Fei
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4271

Room-Temperature Ultraviolet Nanowire Nanolasers
journal, June 2001

  • Huang, Michael H.; Mao, Samuel; Feick, Henning
  • Science, Vol. 292, Issue 5523, p. 1897-1899
  • DOI: 10.1126/science.1060367

Lasing in dark and bright modes of a finite-sized plasmonic lattice
journal, January 2017

  • Hakala, T. K.; Rekola, H. T.; Väkeväinen, A. I.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13687

Ultrafast plasmonic nanowire lasers near the surface plasmon frequency
journal, September 2014

  • Sidiropoulos, Themistoklis P. H.; Röder, Robert; Geburt, Sebastian
  • Nature Physics, Vol. 10, Issue 11
  • DOI: 10.1038/nphys3103

Controlling upconversion nanocrystals for emerging applications
journal, November 2015


Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging
journal, March 2014

  • Gargas, Daniel J.; Chan, Emory M.; Ostrowski, Alexis D.
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.29

Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals
journal, June 2009

  • Wu, S.; Han, G.; Milliron, D. J.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 27, p. 10917-10921
  • DOI: 10.1073/pnas.0904792106

Amplified Spontaneous Emission and Lasing from Lanthanide-Doped Up-Conversion Nanocrystals
journal, November 2013

  • Zhu, Hai; Chen, Xian; Jin, Li Min
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn405387t

Continuous-wave upconverting nanoparticle microlasers
journal, June 2018

  • Fernandez-Bravo, Angel; Yao, Kaiyuan; Barnard, Edward S.
  • Nature Nanotechnology, Vol. 13, Issue 7
  • DOI: 10.1038/s41565-018-0161-8

Controlled Synthesis and Single-Particle Imaging of Bright, Sub-10 nm Lanthanide-Doped Upconverting Nanocrystals
journal, February 2012

  • Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn3000737

Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells
journal, October 2014

  • Grim, Joel Q.; Christodoulou, Sotirios; Di Stasio, Francesco
  • Nature Nanotechnology, Vol. 9, Issue 11
  • DOI: 10.1038/nnano.2014.213

Organic Semiconductor Lasers
journal, April 2007

  • Samuel, I. D. W.; Turnbull, G. A.
  • Chemical Reviews, Vol. 107, Issue 4
  • DOI: 10.1021/cr050152i

Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals
journal, December 2013

  • Sun, Qi-C.; Mundoor, Haridas; Ribot, Josep C.
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl403383w

Collective Resonances in Gold Nanoparticle Arrays
journal, September 2008


Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes
journal, June 2004

  • Zou, Shengli; Janel, Nicolas; Schatz, George C.
  • The Journal of Chemical Physics, Vol. 120, Issue 23
  • DOI: 10.1063/1.1760740

Real-time tunable lasing from plasmonic nanocavity arrays
journal, April 2015

  • Yang, Ankun; Hoang, Thang B.; Dridi, Montacer
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7939

Stretchable Nanolasing from Hybrid Quadrupole Plasmons
journal, June 2018


Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance
journal, August 2018


Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy
journal, February 2017


Room-temperature sub-diffraction-limited plasmon laser by total internal reflection
journal, December 2010

  • Ma, Ren-Min; Oulton, Rupert F.; Sorger, Volker J.
  • Nature Materials, Vol. 10, Issue 2
  • DOI: 10.1038/nmat2919

Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics
journal, February 2018


Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging
journal, September 2016


Multiscale patterning of plasmonic metamaterials
journal, August 2007

  • Henzie, Joel; Lee, Min Hyung; Odom, Teri W.
  • Nature Nanotechnology, Vol. 2, Issue 9
  • DOI: 10.1038/nnano.2007.252