skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interactive Effects of Microbes and Nitrogen on Panicum virgatum Root Functional Traits and Patterns of Phenotypic Selection

Abstract

Premise of research. Plants in natural and agricultural systems are influenced in myriad ways by their microbial communities, particularly by providing goods and services that change plant functional traits. Microbes are considered an influential part of the environmental context that change plant trait expression, but often, microbe-mediated effects are contingent on local resources, such as nitrogen. Here, we ask how microbes and nitrogen affect belowground functional traits and patterns of phenotypic selection. Methodology. We performed a fully factorial greenhouse experiment with switchgrass (Panicum virgatum), manipulating microbial community composition and nitrogen availability. We measured plant performance and belowground functional traits and performed 16S amplicon sequencing of the root-associated microbial communities. We looked for correlations between microbial taxa and root functional traits, and we performed phenotypic selection analysis on five belowground functional traits to determine how traits affect plant relative performance across biotic and abiotic contexts. Pivotal results. All belowground plant functional traits except root tissue density were affected by adding nitrogen. We found that a microbial taxon (amplicon sequence variant [ASV]) in the genus Micromonospora correlated with shorter root lengths. We also found strong positive selection for longer roots regardless of the abiotic or biotic environment. In contrast, selection favored lowermore » root-to-shoot ratios in high-nitrogen conditions, and selection on root tissue density was highest in treatments that had high nitrogen levels and perturbed microbial communities. Conclusions. We did not detect microbial effects on the expression of plant traits (ecological effects); however, patterns of phenotypic selection (evolutionary effects) on root tissue density differed depending on the biotic and abiotic environment. Additionally, we detected strong selection for increased root length across treatments; we also found that one ASV correlated with decreased root length, indicating potential conflict between root microbiome components and plant fitness. Future work would be to include microbial taxa in phenotypic selection analysis and to conduct manipulations of the microbes correlated with functional traits to determine causality.« less

Authors:
 [1];  [2];  [2];  [1];  [1];  [1];  [1];  [2];  [2];  [1]
  1. Washington State Univ., Pullman, WA (United States)
  2. Michigan State Univ., East Lansing, MI (United States)
Publication Date:
Research Org.:
Great Lakes Bioenergy Research Center (GLBRC), Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1600977
Grant/Contract Number:  
SC0018409; FC02-07ER64494
Resource Type:
Accepted Manuscript
Journal Name:
International Journal of Plant Sciences
Additional Journal Information:
Journal Volume: 181; Journal Issue: 1; Journal ID: ISSN 1058-5893
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Microbiome; extended phenotype; selection analysis; plant-microbe interactions; functional traits; roots; nitrogen

Citation Formats

Petipas, Renee H., Bowsher, Alan W., Bekkering, Cody S., Jack, Chandra N., McLachlan, Emily E., White III, Richard Allen, Younginger, Brett S., Tiemann, Lisa K., Evans, Sarah E., and Friesen, Maren L.. Interactive Effects of Microbes and Nitrogen on Panicum virgatum Root Functional Traits and Patterns of Phenotypic Selection. United States: N. p., 2019. Web. https://doi.org/10.1086/706198.
Petipas, Renee H., Bowsher, Alan W., Bekkering, Cody S., Jack, Chandra N., McLachlan, Emily E., White III, Richard Allen, Younginger, Brett S., Tiemann, Lisa K., Evans, Sarah E., & Friesen, Maren L.. Interactive Effects of Microbes and Nitrogen on Panicum virgatum Root Functional Traits and Patterns of Phenotypic Selection. United States. https://doi.org/10.1086/706198
Petipas, Renee H., Bowsher, Alan W., Bekkering, Cody S., Jack, Chandra N., McLachlan, Emily E., White III, Richard Allen, Younginger, Brett S., Tiemann, Lisa K., Evans, Sarah E., and Friesen, Maren L.. Tue . "Interactive Effects of Microbes and Nitrogen on Panicum virgatum Root Functional Traits and Patterns of Phenotypic Selection". United States. https://doi.org/10.1086/706198. https://www.osti.gov/servlets/purl/1600977.
@article{osti_1600977,
title = {Interactive Effects of Microbes and Nitrogen on Panicum virgatum Root Functional Traits and Patterns of Phenotypic Selection},
author = {Petipas, Renee H. and Bowsher, Alan W. and Bekkering, Cody S. and Jack, Chandra N. and McLachlan, Emily E. and White III, Richard Allen and Younginger, Brett S. and Tiemann, Lisa K. and Evans, Sarah E. and Friesen, Maren L.},
abstractNote = {Premise of research. Plants in natural and agricultural systems are influenced in myriad ways by their microbial communities, particularly by providing goods and services that change plant functional traits. Microbes are considered an influential part of the environmental context that change plant trait expression, but often, microbe-mediated effects are contingent on local resources, such as nitrogen. Here, we ask how microbes and nitrogen affect belowground functional traits and patterns of phenotypic selection. Methodology. We performed a fully factorial greenhouse experiment with switchgrass (Panicum virgatum), manipulating microbial community composition and nitrogen availability. We measured plant performance and belowground functional traits and performed 16S amplicon sequencing of the root-associated microbial communities. We looked for correlations between microbial taxa and root functional traits, and we performed phenotypic selection analysis on five belowground functional traits to determine how traits affect plant relative performance across biotic and abiotic contexts. Pivotal results. All belowground plant functional traits except root tissue density were affected by adding nitrogen. We found that a microbial taxon (amplicon sequence variant [ASV]) in the genus Micromonospora correlated with shorter root lengths. We also found strong positive selection for longer roots regardless of the abiotic or biotic environment. In contrast, selection favored lower root-to-shoot ratios in high-nitrogen conditions, and selection on root tissue density was highest in treatments that had high nitrogen levels and perturbed microbial communities. Conclusions. We did not detect microbial effects on the expression of plant traits (ecological effects); however, patterns of phenotypic selection (evolutionary effects) on root tissue density differed depending on the biotic and abiotic environment. Additionally, we detected strong selection for increased root length across treatments; we also found that one ASV correlated with decreased root length, indicating potential conflict between root microbiome components and plant fitness. Future work would be to include microbial taxa in phenotypic selection analysis and to conduct manipulations of the microbes correlated with functional traits to determine causality.},
doi = {10.1086/706198},
journal = {International Journal of Plant Sciences},
number = 1,
volume = 181,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share: