skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Soil moisture and hydrology projections of the permafrost region – a model intercomparison

Abstract

This study investigates and compares soil moisture and hydrology projections of broadly used land models with permafrost processes and highlights the causes and impacts of permafrost zone soil moisture projections. Climate models project warmer temperatures and increases in precipitation (P) which will intensify evapotranspiration (ET) and runoff in land models. However, this study shows that most models project a long-term drying of the surface soil (0–20 cm) for the permafrost region despite increases in the net air–surface water flux (P-ET). Drying is generally explained by infiltration of moisture to deeper soil layers as the active layer deepens or permafrost thaws completely. Although most models agree on drying, the projections vary strongly in magnitude and spatial pattern. Land models tend to agree with decadal runoff trends but underestimate runoff volume when compared to gauge data across the major Arctic river basins, potentially indicating model structural limitations. Here, the coordinated efforts to address the ongoing challenges presented in this study will help reduce uncertainty in our capability to predict the future Arctic hydrological state and associated land–atmosphere biogeochemical processes across spatial and temporal scales.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [5];  [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [9];  [10]; ORCiD logo [11];  [12]; ORCiD logo [13]; ORCiD logo [14]; ORCiD logo [15];  [16]
  1. Univ. of Wisconsin, Madison, WI (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. National Center for Atmospheric Research, Boulder, CO (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Univ. of Alaska, Fairbanks, AK (United States)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  6. Univ. of Colorado, Boulder, CO (United States)
  7. Univ. of Colorado, Boulder, CO (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  8. Univ. Grenoble Alps and CNRS, Grenoble (France); Peking Univ., Beijing (China)
  9. Univ. of Washington, Seattle, WA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  10. IRSTEA-HHLY, Lyon (France); IRSTEA-ETNA, Grenoble (France)
  11. Met Office Hadley Centre, Exeter (United Kingdom)
  12. Univ. of Leeds (United Kingdom)
  13. Beijing Normal Univ. (China)
  14. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  15. Univ. of Maine, Orono, ME (United States)
  16. Lund Univ. (Sweden); Univ. of Copenhagen (Denmark)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1600518
Alternate Identifier(s):
OSTI ID: 1604736
Report Number(s):
[PNNL-SA-151044]
[Journal ID: ISSN 1994-0424]
Grant/Contract Number:  
[AC05-76RL01830; AC02-05CH11231]
Resource Type:
Accepted Manuscript
Journal Name:
The Cryosphere (Online)
Additional Journal Information:
[Journal Name: The Cryosphere (Online); Journal Volume: 14; Journal Issue: 2]; Journal ID: ISSN 1994-0424
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Andresen, Christian G., Lawrence, David M., Wilson, Cathy J., McGuire, A. David, Koven, Charles, Schaefer, Kevin, Jafarov, Elchin, Peng, Shushi, Chen, Xiaodong, Gouttevin, Isabelle, Burke, Eleanor, Chadburn, Sarah, Ji, Duoying, Chen, Guangsheng, Hayes, Daniel, and Zhang, Wenxin. Soil moisture and hydrology projections of the permafrost region – a model intercomparison. United States: N. p., 2020. Web. doi:10.5194/tc-14-445-2020.
Andresen, Christian G., Lawrence, David M., Wilson, Cathy J., McGuire, A. David, Koven, Charles, Schaefer, Kevin, Jafarov, Elchin, Peng, Shushi, Chen, Xiaodong, Gouttevin, Isabelle, Burke, Eleanor, Chadburn, Sarah, Ji, Duoying, Chen, Guangsheng, Hayes, Daniel, & Zhang, Wenxin. Soil moisture and hydrology projections of the permafrost region – a model intercomparison. United States. doi:10.5194/tc-14-445-2020.
Andresen, Christian G., Lawrence, David M., Wilson, Cathy J., McGuire, A. David, Koven, Charles, Schaefer, Kevin, Jafarov, Elchin, Peng, Shushi, Chen, Xiaodong, Gouttevin, Isabelle, Burke, Eleanor, Chadburn, Sarah, Ji, Duoying, Chen, Guangsheng, Hayes, Daniel, and Zhang, Wenxin. Wed . "Soil moisture and hydrology projections of the permafrost region – a model intercomparison". United States. doi:10.5194/tc-14-445-2020. https://www.osti.gov/servlets/purl/1600518.
@article{osti_1600518,
title = {Soil moisture and hydrology projections of the permafrost region – a model intercomparison},
author = {Andresen, Christian G. and Lawrence, David M. and Wilson, Cathy J. and McGuire, A. David and Koven, Charles and Schaefer, Kevin and Jafarov, Elchin and Peng, Shushi and Chen, Xiaodong and Gouttevin, Isabelle and Burke, Eleanor and Chadburn, Sarah and Ji, Duoying and Chen, Guangsheng and Hayes, Daniel and Zhang, Wenxin},
abstractNote = {This study investigates and compares soil moisture and hydrology projections of broadly used land models with permafrost processes and highlights the causes and impacts of permafrost zone soil moisture projections. Climate models project warmer temperatures and increases in precipitation (P) which will intensify evapotranspiration (ET) and runoff in land models. However, this study shows that most models project a long-term drying of the surface soil (0–20 cm) for the permafrost region despite increases in the net air–surface water flux (P-ET). Drying is generally explained by infiltration of moisture to deeper soil layers as the active layer deepens or permafrost thaws completely. Although most models agree on drying, the projections vary strongly in magnitude and spatial pattern. Land models tend to agree with decadal runoff trends but underestimate runoff volume when compared to gauge data across the major Arctic river basins, potentially indicating model structural limitations. Here, the coordinated efforts to address the ongoing challenges presented in this study will help reduce uncertainty in our capability to predict the future Arctic hydrological state and associated land–atmosphere biogeochemical processes across spatial and temporal scales.},
doi = {10.5194/tc-14-445-2020},
journal = {The Cryosphere (Online)},
number = [2],
volume = [14],
place = {United States},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
journal, March 2015

  • Koven, Charles D.; Lawrence, David M.; Riley, William J.
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1415123112

A simple hydrologically based model of land surface water and energy fluxes for general circulation models
journal, January 1994

  • Liang, Xu; Lettenmaier, Dennis P.; Wood, Eric F.
  • Journal of Geophysical Research, Vol. 99, Issue D7
  • DOI: 10.1029/94JD00483

Disappearing Arctic Lakes
journal, June 2005


Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology
journal, January 2012


The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics
journal, January 2016


The Community Climate System Model Version 4
journal, October 2011

  • Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.
  • Journal of Climate, Vol. 24, Issue 19
  • DOI: 10.1175/2011JCLI4083.1

Microtopographic control on the ground thermal regime in ice wedge polygons
journal, January 2018

  • Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.
  • The Cryosphere, Vol. 12, Issue 6
  • DOI: 10.5194/tc-12-1957-2018

Simulated high-latitude soil thermal dynamics during the past 4 decades
journal, January 2016


Circumpolar distribution and carbon storage of thermokarst landscapes
journal, October 2016

  • Olefeldt, D.; Goswami, S.; Grosse, G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13043

The Common Land Model
journal, August 2003

  • Dai, Yongjiu; Zeng, Xubin; Dickinson, Robert E.
  • Bulletin of the American Meteorological Society, Vol. 84, Issue 8
  • DOI: 10.1175/BAMS-84-8-1013

Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

A multimodel simulation of pan-Arctic hydrology: MULTIMODEL PAN-ARCTIC HYDROLOGY
journal, November 2007

  • Slater, A. G.; Bohn, T. J.; McCreight, J. L.
  • Journal of Geophysical Research: Biogeosciences, Vol. 112, Issue G4
  • DOI: 10.1029/2006JG000303

Amount and timing of permafrost carbon release in response to climate warming: AMOUNT AND TIMING OF PERMAFROST CARBON RELEASE
journal, February 2011


Polygonal tundra geomorphological change in response to warming alters future CO 2 and CH 4 flux on the Barrow Peninsula
journal, November 2014

  • Lara, Mark J.; McGuire, A. David; Euskirchen, Eugenie S.
  • Global Change Biology, Vol. 21, Issue 4
  • DOI: 10.1111/gcb.12757

A General Model for the Light-Use Efficiency of Primary Production
journal, October 1996

  • Haxeltine, A.; Prentice, I. C.
  • Functional Ecology, Vol. 10, Issue 5
  • DOI: 10.2307/2390165

Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model
journal, January 2004


A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system: DVGM FOR COUPLED CLIMATE STUDIES
journal, February 2005

  • Krinner, G.; Viovy, Nicolas; de Noblet-Ducoudré, Nathalie
  • Global Biogeochemical Cycles, Vol. 19, Issue 1
  • DOI: 10.1029/2003GB002199

Improved modeling of permafrost dynamics in a GCM land-surface scheme: MODELING PERMAFROST DYNAMICS IN ALASKA BY CLM3
journal, April 2007

  • Nicolsky, D. J.; Romanovsky, V. E.; Alexeev, V. A.
  • Geophysical Research Letters, Vol. 34, Issue 8
  • DOI: 10.1029/2007GL029525

Changes in Continental Freshwater Discharge from 1948 to 2004
journal, May 2009

  • Dai, Aiguo; Qian, Taotao; Trenberth, Kevin E.
  • Journal of Climate, Vol. 22, Issue 10
  • DOI: 10.1175/2008JCLI2592.1

Mechanisms influencing changes in lake area in Alaskan boreal forest: MECHANISMS FOR LAKE AREA CHANGE IN ALASKA
journal, May 2011


Sensitivity of surface fluxes to the number of layers in the soil model used in GCMs
journal, October 2000

  • de Rosnay, P.; Bruen, M.; Polcher, J.
  • Geophysical Research Letters, Vol. 27, Issue 20
  • DOI: 10.1029/2000GL011574

Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO 2 and CH 4 emissions
journal, September 2015


Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape
journal, October 2018

  • Jafarov, Elchin E.; Coon, Ethan T.; Harp, Dylan R.
  • Environmental Research Letters, Vol. 13, Issue 10
  • DOI: 10.1088/1748-9326/aadd30

Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling
journal, July 2006

  • Sheffield, Justin; Goteti, Gopi; Wood, Eric F.
  • Journal of Climate, Vol. 19, Issue 13
  • DOI: 10.1175/JCLI3790.1

Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data
journal, January 2012

  • Ringeval, B.; Decharme, B.; Piao, S. L.
  • Geoscientific Model Development, Vol. 5, Issue 4
  • DOI: 10.5194/gmd-5-941-2012

Impact of model developments on present and future simulations of permafrost in a global land-surface model
journal, January 2015


Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology
journal, March 2016

  • Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.
  • Nature Geoscience, Vol. 9, Issue 4
  • DOI: 10.1038/ngeo2674

Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground: Polygonal Ground Chemistry
journal, March 2015

  • Newman, B. D.; Throckmorton, H. M.; Graham, D. E.
  • Geophysical Research Letters, Vol. 42, Issue 6
  • DOI: 10.1002/2014GL062804

Evaporation, and Moisture and heat Fields in the soil
journal, August 1957


On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model
journal, January 2009

  • Koven, C.; Friedlingstein, P.; Ciais, P.
  • Geophysical Research Letters, Vol. 36, Issue 21
  • DOI: 10.1029/2009GL040150

Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model: IMPROVED CLM COLD-REGION HYDROLOGY
journal, March 2012

  • Swenson, S. C.; Lawrence, D. M.; Lee, Hanna
  • Journal of Advances in Modeling Earth Systems, Vol. 4, Issue 3
  • DOI: 10.1029/2012MS000165

Long-term CO2 production following permafrost thaw
journal, July 2013

  • Elberling, Bo; Michelsen, Anders; Schädel, Christina
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1955

Hydrologic Impacts of Thawing Permafrost—A Review
journal, January 2016


Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska
journal, November 2017


Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations
journal, November 2010

  • Rawlins, Michael A.; Steele, Michael; Holland, Marika M.
  • Journal of Climate, Vol. 23, Issue 21
  • DOI: 10.1175/2010JCLI3421.1

Diagnosing Present and Future Permafrost from Climate Models
journal, August 2013


TUNDRA CO 2 FLUXES IN RESPONSE TO EXPERIMENTAL WARMING ACROSS LATITUDINAL AND MOISTURE GRADIENTS
journal, May 2007

  • Oberbauer, Steven F.; Tweedie, Craig E.; Welker, Jeff M.
  • Ecological Monographs, Vol. 77, Issue 2
  • DOI: 10.1890/06-0649

Pathways of ice-wedge degradation in polygonal tundra under different hydrological conditions
journal, January 2019

  • Nitzbon, Jan; Langer, Moritz; Westermann, Sebastian
  • The Cryosphere, Vol. 13, Issue 4
  • DOI: 10.5194/tc-13-1089-2019

Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region
journal, January 2016


Rising plant-mediated methane emissions from arctic wetlands
journal, September 2016

  • Andresen, Christian G.; Lara, Mark J.; Tweedie, Craig E.
  • Global Change Biology, Vol. 23, Issue 3
  • DOI: 10.1111/gcb.13469

Is the northern high-latitude land-based CO 2 sink weakening? : THE HIGH-LATITUDE CO
journal, August 2011

  • Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.
  • Global Biogeochemical Cycles, Vol. 25, Issue 3
  • DOI: 10.1029/2010GB003813

Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale
journal, October 2006

  • Niu, Guo-Yue; Yang, Zong-Liang
  • Journal of Hydrometeorology, Vol. 7, Issue 5
  • DOI: 10.1175/JHM538.1

Nonlinear CO 2 flux response to 7 years of experimentally induced permafrost thaw
journal, March 2017

  • Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo
  • Global Change Biology, Vol. 23, Issue 9
  • DOI: 10.1111/gcb.13661

Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model
journal, January 2019


The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes
journal, January 2011

  • Best, M. J.; Pryor, M.; Clark, D. B.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-677-2011

Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow: PERMAFROST THAW, LANDSCAPE CHANGE, AND GROUNDWATER FLOW
journal, February 2016

  • Kurylyk, Barret L.; Hayashi, Masaki; Quinton, William L.
  • Water Resources Research, Vol. 52, Issue 2
  • DOI: 10.1002/2015WR018057

Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013


Reduction in areal extent of high-latitude wetlands in response to permafrost thaw
journal, June 2011

  • Avis, Christopher A.; Weaver, Andrew J.; Meissner, Katrin J.
  • Nature Geoscience, Vol. 4, Issue 7
  • DOI: 10.1038/ngeo1160

Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland
journal, January 2013


Effects of excess ground ice on projections of permafrost in a warming climate
journal, December 2014


An improved method of constructing a database of monthly climate observations and associated high-resolution grids
journal, January 2005

  • Mitchell, Timothy D.; Jones, Philip D.
  • International Journal of Climatology, Vol. 25, Issue 6
  • DOI: 10.1002/joc.1181

The impacts of recent permafrost thaw on land–atmosphere greenhouse gas exchange
journal, April 2014

  • Hayes, Daniel J.; Kicklighter, David W.; McGuire, A. David
  • Environmental Research Letters, Vol. 9, Issue 4
  • DOI: 10.1088/1748-9326/9/4/045005

Modelling root water uptake in a complex land surface scheme coupled to a GCM
journal, January 1998


Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1
journal, January 2014


Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS
journal, May 2013

  • Harris, I.; Jones, P. D.; Osborn, T. J.
  • International Journal of Climatology, Vol. 34, Issue 3
  • DOI: 10.1002/joc.3711

Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009: MODELING PERMAFROST CARBON DYNAMICS
journal, July 2016

  • McGuire, A. David; Koven, Charles; Lawrence, David M.
  • Global Biogeochemical Cycles, Vol. 30, Issue 7
  • DOI: 10.1002/2016GB005405

Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska
journal, January 2011

  • Jones, B. M.; Grosse, G.; Arp, C. D.
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2011JG001666

Use of various remote sensing land cover products for plant functional type mapping over Siberia
journal, January 2013


Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter
journal, January 2008

  • Lawrence, David M.; Slater, Andrew G.; Romanovsky, Vladimir E.
  • Journal of Geophysical Research, Vol. 113, Issue F2
  • DOI: 10.1029/2007JF000883

Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948-2013): Disappearing Arctic tundra ponds
journal, March 2015

  • Andresen, Christian G.; Lougheed, Vanessa L.
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 3
  • DOI: 10.1002/2014JG002778

A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1
journal, January 1980


Comparative analysis of several conceptual rainfall-runoff models
journal, January 1991


Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data
journal, January 2007

  • Niu, Guo-Yue; Yang, Zong-Liang; Dickinson, Robert E.
  • Journal of Geophysical Research, Vol. 112, Issue D7
  • DOI: 10.1029/2006JD007522