DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Level VSCF/VCI Calculations Decode the Vibrational Spectrum of the Aqueous Proton

Abstract

We report that the hydrated excess proton is a common species in aqueous chemistry which complexes with water in a variety of structures. The infrared spectrum of the aqueous proton is particularly sensitive to this array of structures, which manifests as continuous IR absorption from 1000-3000 cm-1 known as the “proton continuum”. Because of the extreme breadth of the continuum and strong anharmonicity of the involved vibrational modes, this spectrum has eluded straightforward interpretation and simulation. Using protonated water hexamer clusters from reactive molecular dynamics trajectories, and focusing on their central H+(H2O)2 structures’ spectral contribution, we reproduce the linear IR spectrum of the aqueous proton with a high-level local- monomer quantum method and highly accurate many-body potential energy surface. The accuracy of this approach is first verified in the vibrational spectra of the two isomers of the protonated water hexamer in the gas phase. We then apply this approach to 800 H+(H2O)6 clusters, also written as [H+(H2O)2](H2O)4, drawn from MS-EVB simulations of the bulk liquid to calculate the infrared spectrum of the aqueous proton complex. Incorporation of anharmonic effects to the vibrational potential and quantum mechanical treatment of the proton produce better agreement to the infrared spectrum compared to the double-harmonic approximation. We assess the correlation of the pro- ton stretching mode with different atomistic coordinates, finding the best correlation with $$\langle$$ROH$$\rangle$$, the expectation value of the proton-oxygen distance ROH. Finally, we also decompose the IR spectrum based on normal mode vibrations and $$\langle$$ROH$$\rangle$$ to provide insight on how different frequency regions in the continuum report on different configurations, vibrational modes, and mode couplings.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Emory Univ., Atlanta, GA (United States)
  2. Univ. of Chicago, IL (United States). James Frank Inst., and Inst. for Biophysical Dynamics
Publication Date:
Research Org.:
Univ. of Chicago, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1599995
Grant/Contract Number:  
SC0014305; CHE-1463552
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 123; Journal Issue: 33; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Yu, Qi, Carpenter, William B., Lewis, Nicholas H. C., Tokmakoff, Andrei, and Bowman, Joel M. High-Level VSCF/VCI Calculations Decode the Vibrational Spectrum of the Aqueous Proton. United States: N. p., 2019. Web. doi:10.1021/acs.jpcb.9b05723.
Yu, Qi, Carpenter, William B., Lewis, Nicholas H. C., Tokmakoff, Andrei, & Bowman, Joel M. High-Level VSCF/VCI Calculations Decode the Vibrational Spectrum of the Aqueous Proton. United States. https://doi.org/10.1021/acs.jpcb.9b05723
Yu, Qi, Carpenter, William B., Lewis, Nicholas H. C., Tokmakoff, Andrei, and Bowman, Joel M. Tue . "High-Level VSCF/VCI Calculations Decode the Vibrational Spectrum of the Aqueous Proton". United States. https://doi.org/10.1021/acs.jpcb.9b05723. https://www.osti.gov/servlets/purl/1599995.
@article{osti_1599995,
title = {High-Level VSCF/VCI Calculations Decode the Vibrational Spectrum of the Aqueous Proton},
author = {Yu, Qi and Carpenter, William B. and Lewis, Nicholas H. C. and Tokmakoff, Andrei and Bowman, Joel M.},
abstractNote = {We report that the hydrated excess proton is a common species in aqueous chemistry which complexes with water in a variety of structures. The infrared spectrum of the aqueous proton is particularly sensitive to this array of structures, which manifests as continuous IR absorption from 1000-3000 cm-1 known as the “proton continuum”. Because of the extreme breadth of the continuum and strong anharmonicity of the involved vibrational modes, this spectrum has eluded straightforward interpretation and simulation. Using protonated water hexamer clusters from reactive molecular dynamics trajectories, and focusing on their central H+(H2O)2 structures’ spectral contribution, we reproduce the linear IR spectrum of the aqueous proton with a high-level local- monomer quantum method and highly accurate many-body potential energy surface. The accuracy of this approach is first verified in the vibrational spectra of the two isomers of the protonated water hexamer in the gas phase. We then apply this approach to 800 H+(H2O)6 clusters, also written as [H+(H2O)2](H2O)4, drawn from MS-EVB simulations of the bulk liquid to calculate the infrared spectrum of the aqueous proton complex. Incorporation of anharmonic effects to the vibrational potential and quantum mechanical treatment of the proton produce better agreement to the infrared spectrum compared to the double-harmonic approximation. We assess the correlation of the pro- ton stretching mode with different atomistic coordinates, finding the best correlation with $\langle$ROH$\rangle$, the expectation value of the proton-oxygen distance ROH. Finally, we also decompose the IR spectrum based on normal mode vibrations and $\langle$ROH$\rangle$ to provide insight on how different frequency regions in the continuum report on different configurations, vibrational modes, and mode couplings.},
doi = {10.1021/acs.jpcb.9b05723},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 33,
volume = 123,
place = {United States},
year = {Tue Jul 30 00:00:00 EDT 2019},
month = {Tue Jul 30 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Double harmonic spectra of H+(H2O)2 structure in 800 protonated water clusters with different sizes. H+(H2O)n has 16-18 water molecules and H +(H2O)6 has proton with 6 water molecules. The harmonic frequencies are calculated from local H+(H2O)2 monomer analysis where central H+(H2O)2 structures are circled in the right panelmore » for different clusters.« less

Save / Share:

Works referenced in this record:

Proton migration along the membrane surface and retarded surface to bulk transfer
journal, August 1994

  • Heberle, Joachim; Riesle, Jens; Thiedemann, Gerd
  • Nature, Vol. 370, Issue 6488
  • DOI: 10.1038/370379a0

Proton Transfer Pathways in Bacteriorhodopsin at 2.3 Angstrom Resolution
journal, June 1998


Real-Time Observation of Bimodal Proton Transfer in Acid-Base Pairs in Water
journal, July 2003


The Grotthuss mechanism
journal, October 1995


The nature of the hydrated excess proton in water
journal, February 1999

  • Marx, Dominik; Tuckerman, Mark E.; Hutter, Jürg
  • Nature, Vol. 397, Issue 6720
  • DOI: 10.1038/17579

Vibrational spectroscopy of the hydrated hydronium cluster ions H 3 O + ⋅(H 2 O) n ( n =1, 2, 3)
journal, December 1989

  • Yeh, L. I.; Okumura, M.; Myers, J. D.
  • The Journal of Chemical Physics, Vol. 91, Issue 12
  • DOI: 10.1063/1.457305

Infrared Spectra of H + (H 2 O) 5 - 8 Clusters:  Evidence for Symmetric Proton Hydration
journal, February 2000

  • Jiang, Jyh-Chiang; Wang, Yi-Sheng; Chang, Hai-Chou
  • Journal of the American Chemical Society, Vol. 122, Issue 7
  • DOI: 10.1021/ja990033i

Gas-Phase Infrared Spectrum of the Protonated Water Dimer
journal, February 2003


Spectral Signatures of Hydrated Proton Vibrations in Water Clusters
journal, June 2005


Dynamics and Infrared Spectroscopy of the Protonated Water Dimer
journal, September 2007

  • Vendrell, Oriol; Gatti, Fabien; Meyer, Hans-Dieter
  • Angewandte Chemie International Edition, Vol. 46, Issue 36
  • DOI: 10.1002/anie.200702201

Spectroscopic snapshots of the proton-transfer mechanism in water
journal, December 2016


High-Level Quantum Calculations of the IR Spectra of the Eigen, Zundel, and Ring Isomers of H + (H 2 O) 4 Find a Single Match to Experiment
journal, August 2017

  • Yu, Qi; Bowman, Joel M.
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b05459

The nature and transport mechanism of hydrated hydroxide ions in aqueous solution
journal, June 2002

  • Tuckerman, Mark E.; Marx, Dominik; Parrinello, Michele
  • Nature, Vol. 417, Issue 6892
  • DOI: 10.1038/nature00797

Ultrafast Hydrogen-Bond Dynamics in the Infrared Spectroscopy of Water
journal, September 2003


Concerted Hydrogen-Bond Dynamics in the Transport Mechanism of the Hydrated Proton: A First-Principles Molecular Dynamics Study
journal, November 2009


The Mechanism of Hydrated Proton Transport in Water
journal, December 2000

  • Day, Tyler J. F.; Schmitt, Udo W.; Voth, Gregory A.
  • Journal of the American Chemical Society, Vol. 122, Issue 48
  • DOI: 10.1021/ja002506n

Ultrafast 2D IR spectroscopy of the excess proton in liquid water
journal, October 2015


Protons and Hydroxide Ions in Aqueous Systems
journal, April 2016


Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy
journal, July 2017

  • Dahms, Fabian; Fingerhut, Benjamin P.; Nibbering, Erik T. J.
  • Science, Vol. 357, Issue 6350
  • DOI: 10.1126/science.aan5144

Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer
journal, March 2018


Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions
journal, July 2018

  • Fournier, Joseph A.; Carpenter, William B.; Lewis, Nicholas H. C.
  • Nature Chemistry, Vol. 10, Issue 9
  • DOI: 10.1038/s41557-018-0091-y

The Structure of the Hydrogen Ion (H aq + ) in Water
journal, February 2010

  • Stoyanov, Evgenii S.; Stoyanova, Irina V.; Reed, Christopher A.
  • Journal of the American Chemical Society, Vol. 132, Issue 5
  • DOI: 10.1021/ja9101826

Hydrated Excess Protons in Acetonitrile/Water Mixtures: Solvation Species and Ultrafast Proton Motions
journal, April 2019

  • Kundu, Achintya; Dahms, Fabian; Fingerhut, Benjamin P.
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 9
  • DOI: 10.1021/acs.jpclett.9b00756

IR spectral assignments for the hydrated excess proton in liquid water
journal, April 2017

  • Biswas, Rajib; Carpenter, William; Fournier, Joseph A.
  • The Journal of Chemical Physics, Vol. 146, Issue 15
  • DOI: 10.1063/1.4980121

Decomposition of the Experimental Raman and Infrared Spectra of Acidic Water into Proton, Special Pair, and Counterion Contributions
journal, October 2017

  • Daly, Clyde A.; Streacker, Louis M.; Sun, Yuchen
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 21
  • DOI: 10.1021/acs.jpclett.7b02435

Isomer-Selective Detection of Hydrogen-Bond Vibrations in the Protonated Water Hexamer
journal, May 2013

  • Heine, Nadja; Fagiani, Matias R.; Rossi, Mariana
  • Journal of the American Chemical Society, Vol. 135, Issue 22
  • DOI: 10.1021/ja401359t

Über den Zustand des Protons (Hydroniumions) in wäßriger Lösung*
journal, June 1954


Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part I: ELEMENTARY PROCESSES
journal, January 1964


Multistate Empirical Valence Bond Model for Proton Transport in Water
journal, July 1998

  • Schmitt, Udo W.; Voth, Gregory A.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 29
  • DOI: 10.1021/jp9818131

Role of Presolvation and Anharmonicity in Aqueous Phase Hydrated Proton Solvation and Transport
journal, November 2015

  • Biswas, Rajib; Tse, Ying-Lung Steve; Tokmakoff, Andrei
  • The Journal of Physical Chemistry B, Vol. 120, Issue 8
  • DOI: 10.1021/acs.jpcb.5b09466

Picosecond Proton Transfer Kinetics in Water Revealed with Ultrafast IR Spectroscopy
journal, February 2018

  • Carpenter, William B.; Fournier, Joseph A.; Lewis, Nicholas H. C.
  • The Journal of Physical Chemistry B, Vol. 122, Issue 10
  • DOI: 10.1021/acs.jpcb.8b00118

Ab initio potential energy and dipole moment surfaces for H5O2+
journal, January 2005

  • Huang, Xinchuan; Braams, Bastiaan J.; Bowman, Joel M.
  • The Journal of Chemical Physics, Vol. 122, Issue 4
  • DOI: 10.1063/1.1834500

Permutationally Invariant Potential Energy Surfaces
journal, April 2018


Benchmark Electronic Structure Calculations for H 3 O + (H 2 O) n , n = 0–5, Clusters and Tests of an Existing 1,2,3-Body Potential Energy Surface with a New 4-Body Correction
journal, August 2018

  • Heindel, Joseph P.; Yu, Qi; Bowman, Joel M.
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 9
  • DOI: 10.1021/acs.jctc.8b00598

Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters
journal, April 2011

  • Wang, Yimin; Bowman, Joel M.
  • The Journal of Chemical Physics, Vol. 134, Issue 15
  • DOI: 10.1063/1.3579995

Quantum Calculations of Intramolecular IR Spectra of Ice Models Using Ab Initio Potential and Dipole Moment Surfaces
journal, November 2012

  • Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 24
  • DOI: 10.1021/jz3016777

Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment
journal, May 2015

  • Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
  • The Journal of Chemical Physics, Vol. 142, Issue 19
  • DOI: 10.1063/1.4921045

Quantum Local Monomer IR Spectrum of Liquid D 2 O at 300 K from 0 to 4000 cm –1 Is in Near-Quantitative Agreement with Experiment
journal, March 2016

  • Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
  • The Journal of Physical Chemistry B, Vol. 120, Issue 10
  • DOI: 10.1021/acs.jpcb.6b01722

Differences in the Vibrational Dynamics of H 2 O and D 2 O: Observation of Symmetric and Antisymmetric Stretching Vibrations in Heavy Water
journal, April 2016

  • De Marco, Luigi; Carpenter, William; Liu, Hanchao
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 10
  • DOI: 10.1021/acs.jpclett.6b00668

Flexible simple point-charge water model with improved liquid-state properties
journal, January 2006

  • Wu, Yujie; Tepper, Harald L.; Voth, Gregory A.
  • The Journal of Chemical Physics, Vol. 124, Issue 2
  • DOI: 10.1063/1.2136877

Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water
journal, July 1995

  • Tuckerman, M.; Laasonen, K.; Sprik, M.
  • The Journal of Chemical Physics, Vol. 103, Issue 1
  • DOI: 10.1063/1.469654

Special Pair Dance and Partner Selection: Elementary Steps in Proton Transport in Liquid Water
journal, August 2008

  • Markovitch, Omer; Chen, Hanning; Izvekov, Sergei
  • The Journal of Physical Chemistry B, Vol. 112, Issue 31
  • DOI: 10.1021/jp804018y

MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules
journal, July 2003

  • Bowman, Joel M.; Carter, Stuart; Huang, Xinchuan
  • International Reviews in Physical Chemistry, Vol. 22, Issue 3
  • DOI: 10.1080/0144235031000124163

Deconstructing Prominent Bands in the Terahertz Spectra of H 7 O 3 + and H 9 O 4 + : Intermolecular Modes in Eigen Clusters
journal, February 2018

  • Esser, Tim K.; Knorke, Harald; Asmis, Knut R.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 4
  • DOI: 10.1021/acs.jpclett.7b03395

Decoding the spectroscopic features and time scales of aqueous proton defects
journal, June 2018

  • Napoli, Joseph A.; Marsalek, Ondrej; Markland, Thomas E.
  • The Journal of Chemical Physics, Vol. 148, Issue 22
  • DOI: 10.1063/1.5023704

Infrared Spectrum of the Hydrated Proton in Water
journal, December 2010

  • Xu, Jianqing; Zhang, Yong; Voth, Gregory A.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 2
  • DOI: 10.1021/jz101536b

How the Zundel (H5O2+) Potential Can Be Used to Predict the Proton Stretch and Bend Frequencies of Larger Protonated Water Clusters
journal, December 2016


Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations
journal, September 2006


Role of Charge Transfer in the Structure and Dynamics of the Hydrated Proton
journal, April 2009

  • Swanson, Jessica M. J.; Simons, Jack
  • The Journal of Physical Chemistry B, Vol. 113, Issue 15
  • DOI: 10.1021/jp810652v

Beyond Badger’s Rule: The Origins and Generality of the Structure–Spectra Relationship of Aqueous Hydrogen Bonds
journal, February 2019

  • Boyer, Mark A.; Marsalek, Ondrej; Heindel, Joseph P.
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 5
  • DOI: 10.1021/acs.jpclett.8b03790

Direct Observation of Ion Pairing in Aqueous Nitric Acid Using 2D Infrared Spectroscopy
journal, December 2018

  • Lewis, Nicholas H. C.; Fournier, Joseph A.; Carpenter, William B.
  • The Journal of Physical Chemistry B, Vol. 123, Issue 1
  • DOI: 10.1021/acs.jpcb.8b10019

Works referencing / citing this record:

Nature of Excess Hydrated Proton at the Water–Air Interface
journal, December 2019

  • Das, Sudipta; Imoto, Sho; Sun, Shumei
  • Journal of the American Chemical Society, Vol. 142, Issue 2
  • DOI: 10.1021/jacs.9b10807

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.