DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dendrite Suppression by a Polymer Coating: A Coarse‐Grained Molecular Study

Abstract

Abstract A major hurdle to the successful deployment of high‐energy‐density lithium metal based batteries is dendrite growth during battery cycling, which raises safety and cycle life concerns. Coating the Li metal anode with a soft polymer layer has been previously shown to be effective in suppressing dendrite growth, leading to uniform lithium deposition even at high current densities. A 3D coarse‐grained molecular model to study the mechanism of dendrite suppression is presented. It is found that the most effective coatings delay or even prevent dendrites from penetrating the polymer layer during deposition. The optimal deposition can be achieved by jointly tuning the polymer stiffness and relaxation time. Higher polymer dielectric permittivity and coating thickness are also effective, but the deposition rate and, therefore, the charging current density is reduced. These findings provide the basis for rational design of soft polymer coatings for stable lithium deposition.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1]
  1. Department of Chemical Engineering Stanford University Stanford CA 94305 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1599927
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Name: Advanced Functional Materials Journal Volume: 30 Journal Issue: 15; Journal ID: ISSN 1616-301X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Kong, Xian, Rudnicki, Paul E., Choudhury, Snehashis, Bao, Zhenan, and Qin, Jian. Dendrite Suppression by a Polymer Coating: A Coarse‐Grained Molecular Study. Germany: N. p., 2020. Web. doi:10.1002/adfm.201910138.
Kong, Xian, Rudnicki, Paul E., Choudhury, Snehashis, Bao, Zhenan, & Qin, Jian. Dendrite Suppression by a Polymer Coating: A Coarse‐Grained Molecular Study. Germany. https://doi.org/10.1002/adfm.201910138
Kong, Xian, Rudnicki, Paul E., Choudhury, Snehashis, Bao, Zhenan, and Qin, Jian. Mon . "Dendrite Suppression by a Polymer Coating: A Coarse‐Grained Molecular Study". Germany. https://doi.org/10.1002/adfm.201910138.
@article{osti_1599927,
title = {Dendrite Suppression by a Polymer Coating: A Coarse‐Grained Molecular Study},
author = {Kong, Xian and Rudnicki, Paul E. and Choudhury, Snehashis and Bao, Zhenan and Qin, Jian},
abstractNote = {Abstract A major hurdle to the successful deployment of high‐energy‐density lithium metal based batteries is dendrite growth during battery cycling, which raises safety and cycle life concerns. Coating the Li metal anode with a soft polymer layer has been previously shown to be effective in suppressing dendrite growth, leading to uniform lithium deposition even at high current densities. A 3D coarse‐grained molecular model to study the mechanism of dendrite suppression is presented. It is found that the most effective coatings delay or even prevent dendrites from penetrating the polymer layer during deposition. The optimal deposition can be achieved by jointly tuning the polymer stiffness and relaxation time. Higher polymer dielectric permittivity and coating thickness are also effective, but the deposition rate and, therefore, the charging current density is reduced. These findings provide the basis for rational design of soft polymer coatings for stable lithium deposition.},
doi = {10.1002/adfm.201910138},
journal = {Advanced Functional Materials},
number = 15,
volume = 30,
place = {Germany},
year = {Mon Feb 17 00:00:00 EST 2020},
month = {Mon Feb 17 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adfm.201910138

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermal relaxation of lithium dendrites
journal, January 2015

  • Aryanfar, Asghar; Brooks, Daniel J.; Colussi, Agustín J.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 12
  • DOI: 10.1039/C4CP05786D

Adlayer Morphologies and Free Energy Landscapes of Clusters of Bis-Fullerenes on Model Gold Surfaces
journal, June 2011

  • Bubnis, Gregory J.; Mayne, Howard R.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 25
  • DOI: 10.1021/jp1123647

Dendrite-Free Lithium Anode via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper
journal, January 2017

  • Chang, Chi-Hao; Chung, Sheng-Heng; Manthiram, Arumugam
  • Advanced Sustainable Systems, Vol. 1, Issue 1-2
  • DOI: 10.1002/adsu.201600034

Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition
journal, September 2018


Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes
journal, August 2017


Mesoscale Complexations in Lithium Electrodeposition
journal, July 2018

  • Hao, Feng; Verma, Ankit; Mukherjee, Partha P.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 31
  • DOI: 10.1021/acsami.8b08796

Toward high lithium conduction in solid polymer and polymer–ceramic batteries
journal, June 2018

  • Commarieu, Basile; Paolella, Andrea; Daigle, Jean-Christophe
  • Current Opinion in Electrochemistry, Vol. 9
  • DOI: 10.1016/j.coelec.2018.03.033

Phase-Field Simulations of Lithium Dendrite Growth with Open-Source Software
journal, June 2018


van der Waals Volumes and Radii
journal, March 1964

  • Bondi, A.
  • The Journal of Physical Chemistry, Vol. 68, Issue 3, p. 441-451
  • DOI: 10.1021/j100785a001

Morphological stability during electrodeposition
journal, June 2017

  • Enrique, Raúl A.; DeWitt, Stephen; Thornton, Katsuyo
  • MRS Communications, Vol. 7, Issue 3
  • DOI: 10.1557/mrc.2017.38

Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries
journal, August 2015


Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies
journal, January 2018

  • Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.
  • Advanced Materials, Vol. 30, Issue 8
  • DOI: 10.1002/adma.201704953

Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations
journal, May 2014

  • Aryanfar, Asghar; Brooks, Daniel; Merinov, Boris V.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 10
  • DOI: 10.1021/jz500207a

Regulation of ramified electrochemical growth by a diffusive wave
journal, August 1995


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Annealing kinetics of electrodeposited lithium dendrites
journal, October 2015

  • Aryanfar, Asghar; Cheng, Tao; Colussi, Agustin J.
  • The Journal of Chemical Physics, Vol. 143, Issue 13
  • DOI: 10.1063/1.4930014

Interactions between Lithium Growths and Nanoporous Ceramic Separators
journal, November 2018


Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
journal, February 2017


Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries
journal, December 2012

  • Mayers, Matthew Z.; Kaminski, Jakub W.; Miller, Thomas F.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 50
  • DOI: 10.1021/jp309321w

High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating
journal, November 2016


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions
journal, July 2016

  • Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.
  • Science Advances, Vol. 2, Issue 7
  • DOI: 10.1126/sciadv.1600320

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

The Effect of Interfacial Deformation on Electrodeposition Kinetics
journal, January 2004

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 6
  • DOI: 10.1149/1.1710893

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm −2 observed in situ in a capillary cell
journal, January 2017

  • Liu, Kai; Bai, Peng; Bazant, Martin Z.
  • Journal of Materials Chemistry A, Vol. 5, Issue 9
  • DOI: 10.1039/C7TA00069C

Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries
journal, October 2017

  • Gao, Yue; Zhao, Yuming; Li, Yuguang C.
  • Journal of the American Chemical Society, Vol. 139, Issue 43
  • DOI: 10.1021/jacs.7b06437

A solid future for battery development
journal, September 2016


Phase field kinetics of lithium electrodeposits
journal, December 2014


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions
journal, April 2017


Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries
journal, November 2015

  • Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0951602jes

Steele (10-4-3) Potential due to a Solid Wall
journal, February 1997


Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes
journal, April 2015

  • Liang, Zheng; Zheng, Guangyuan; Liu, Chong
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5046318

Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
journal, October 2016


Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon
journal, May 2017


Designer interphases for the lithium-oxygen electrochemical cell
journal, April 2017

  • Choudhury, Snehashis; Wan, Charles Tai-Chieh; Al Sadat, Wajdi I.
  • Science Advances, Vol. 3, Issue 4
  • DOI: 10.1126/sciadv.1602809

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Nanostructured Single-Ion-Conducting Hybrid Electrolytes Based on Salty Nanoparticles and Block Copolymers
journal, February 2017


Stability of a Planar Interface During Solidification of a Dilute Binary Alloy
journal, February 1964

  • Mullins, W. W.; Sekerka, R. F.
  • Journal of Applied Physics, Vol. 35, Issue 2
  • DOI: 10.1063/1.1713333

Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes
journal, January 2017

  • Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis
  • Advanced Energy Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aenm.201602367

Effects of Polymer Coatings on Electrodeposited Lithium Metal
journal, August 2018

  • Lopez, Jeffrey; Pei, Allen; Oh, Jin Young
  • Journal of the American Chemical Society, Vol. 140, Issue 37
  • DOI: 10.1021/jacs.8b06047

Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries
journal, August 2015


Effect of thermal processing conditions on the structure and dielectric properties of PVDF films
journal, October 2014


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
journal, August 2017

  • Zhao, Jie; Liao, Lei; Shi, Feifei
  • Journal of the American Chemical Society, Vol. 139, Issue 33
  • DOI: 10.1021/jacs.7b05251

Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries
journal, September 2018


Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

Structure and Ionic Conductivity of Polystyrene- block -poly(ethylene oxide) Electrolytes in the High Salt Concentration Limit
journal, February 2016


Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Pulse-Gradient Spin-Echo 1 H, 7 Li, and 19 F NMR Diffusion and Ionic Conductivity Measurements of 14 Organic Electrolytes Containing LiN(SO 2 CF 3 ) 2
journal, January 1999

  • Hayamizu, Kikuko; Aihara, Yuichi; Arai, Shigemasa
  • The Journal of Physical Chemistry B, Vol. 103, Issue 3
  • DOI: 10.1021/jp9825664

Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions
journal, January 2014

  • Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.085405jes

Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte
journal, July 2016

  • Zhou, Weidong; Wang, Shaofei; Li, Yutao
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b05341

High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes
journal, September 2017

  • Luo, Jing; Fang, Chia-Chen; Wu, Nae-Lih
  • Advanced Energy Materials, Vol. 8, Issue 2
  • DOI: 10.1002/aenm.201701482