DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep learning-enhanced variational Monte Carlo method for quantum many-body physics

ORCiD logo; ; ; ; ;
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:  
Resource Type:
Published Article
Journal Name:
Physical Review Research
Additional Journal Information:
Journal Name: Physical Review Research Journal Volume: 2 Journal Issue: 1; Journal ID: ISSN 2643-1564
American Physical Society
Country of Publication:
United States

Citation Formats

Yang, Li, Leng, Zhaoqi, Yu, Guangyuan, Patel, Ankit, Hu, Wen-Jun, and Pu, Han. Deep learning-enhanced variational Monte Carlo method for quantum many-body physics. United States: N. p., 2020. Web. doi:10.1103/PhysRevResearch.2.012039.
Yang, Li, Leng, Zhaoqi, Yu, Guangyuan, Patel, Ankit, Hu, Wen-Jun, & Pu, Han. Deep learning-enhanced variational Monte Carlo method for quantum many-body physics. United States.
Yang, Li, Leng, Zhaoqi, Yu, Guangyuan, Patel, Ankit, Hu, Wen-Jun, and Pu, Han. Fri . "Deep learning-enhanced variational Monte Carlo method for quantum many-body physics". United States.
title = {Deep learning-enhanced variational Monte Carlo method for quantum many-body physics},
author = {Yang, Li and Leng, Zhaoqi and Yu, Guangyuan and Patel, Ankit and Hu, Wen-Jun and Pu, Han},
abstractNote = {},
doi = {10.1103/PhysRevResearch.2.012039},
journal = {Physical Review Research},
number = 1,
volume = 2,
place = {United States},
year = {2020},
month = {2}

Works referenced in this record:

Exact SO(5) Symmetry in the Spin- 3 / 2 Fermionic System
journal, October 2003

Chiral topological phases from artificial neural networks
journal, May 2018

Hyperspatial optimization of structures
journal, February 2019

Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems
journal, January 2020

Unifying neural-network quantum states and correlator product states via tensor networks
journal, February 2018

Human-level control through deep reinforcement learning
journal, February 2015

  • Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David
  • Nature, Vol. 518, Issue 7540
  • DOI: 10.1038/nature14236

Efficient representation of quantum many-body states with deep neural networks
journal, September 2017

Mastering the game of Go with deep neural networks and tree search
journal, January 2016

  • Silver, David; Huang, Aja; Maddison, Chris J.
  • Nature, Vol. 529, Issue 7587
  • DOI: 10.1038/nature16961

Two-orbital S U(N) magnetism with ultracold alkaline-earth atoms
journal, February 2010

  • Gorshkov, A. V.; Hermele, M.; Gurarie, V.
  • Nature Physics, Vol. 6, Issue 4
  • DOI: 10.1038/nphys1535

Solving frustrated quantum many-particle models with convolutional neural networks
journal, September 2018

Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases
journal, July 2014

Strongly interacting quantum gases in one-dimensional traps
journal, April 2015

Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice
journal, January 2018

  • Saito, Hiroki; Kato, Masaya
  • Journal of the Physical Society of Japan, Vol. 87, Issue 1
  • DOI: 10.7566/JPSJ.87.014001

Constructing exact representations of quantum many-body systems with deep neural networks
journal, December 2018

Strongly interacting confined quantum systems in one dimension
journal, November 2014

  • Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6300

Two-dimensional frustrated J 1 J 2 model studied with neural network quantum states
journal, September 2019

Symmetries and Many-Body Excitations with Neural-Network Quantum States
journal, October 2018

Ground state phase diagram of the one-dimensional Bose-Hubbard model from restricted Boltzmann machines
journal, October 2019

Neural-Network Quantum States, String-Bond States, and Chiral Topological States
journal, January 2018

Restricted Boltzmann machine learning for solving strongly correlated quantum systems
journal, November 2017

Quantum Entanglement in Deep Learning Architectures
journal, February 2019

Direct Probing of the Mott Crossover in the SU ( N ) Fermi-Hubbard Model
journal, June 2016

Approximating quantum many-body wave functions using artificial neural networks
journal, January 2018

Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions
journal, August 2014

  • Scazza, F.; Hofrichter, C.; Höfer, M.
  • Nature Physics, Vol. 10, Issue 10
  • DOI: 10.1038/nphys3061

Mastering the game of Go without human knowledge
journal, October 2017

  • Silver, David; Schrittwieser, Julian; Simonyan, Karen
  • Nature, Vol. 550, Issue 7676
  • DOI: 10.1038/nature24270

Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism
journal, August 2014

Ultracold Fermions and the SU ( N ) Hubbard Model
journal, April 2004

A one-dimensional liquid of fermions with tunable spin
journal, February 2014

  • Pagano, Guido; Mancini, Marco; Cappellini, Giacomo
  • Nature Physics, Vol. 10, Issue 3
  • DOI: 10.1038/nphys2878

Model for a multicomponent quantum system
journal, November 1975

Weak binding between two aromatic rings: Feeling the van der Waals attraction by quantum Monte Carlo methods
journal, July 2007

  • Sorella, Sandro; Casula, Michele; Rocca, Dario
  • The Journal of Chemical Physics, Vol. 127, Issue 1
  • DOI: 10.1063/1.2746035

Solving the quantum many-body problem with artificial neural networks
journal, February 2017

Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential
journal, July 2015

  • Levinsen, Jesper; Massignan, Pietro; Bruun, Georg M.
  • Science Advances, Vol. 1, Issue 6
  • DOI: 10.1126/sciadv.1500197

An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling
journal, September 2012

  • Taie, Shintaro; Yamazaki, Rekishu; Sugawa, Seiji
  • Nature Physics, Vol. 8, Issue 11
  • DOI: 10.1038/nphys2430

Neural-network quantum state tomography
journal, February 2018

Variational Monte Carlo investigation of SU ( N ) Heisenberg chains
journal, May 2015