skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on February 13, 2021

Title: Additive‐Free Formic Acid Dehydrogenation Using a Pincer‐Supported Iron Catalyst

Authors:
 [1];  [2]; ORCiD logo [1]
  1. The Department of ChemistryYale University P.O. Box 208107 New Haven CT-06520 USA
  2. The Department of ChemistryThe University of Missouri Columbia MO-65211 USA
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1599664
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
ChemCatChem
Additional Journal Information:
[Journal Name: ChemCatChem]; Journal ID: ISSN 1867-3880
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Curley, Julia B., Bernskoetter, Wesley H., and Hazari, Nilay. Additive‐Free Formic Acid Dehydrogenation Using a Pincer‐Supported Iron Catalyst. Germany: N. p., 2020. Web. doi:10.1002/cctc.202000066.
Curley, Julia B., Bernskoetter, Wesley H., & Hazari, Nilay. Additive‐Free Formic Acid Dehydrogenation Using a Pincer‐Supported Iron Catalyst. Germany. doi:10.1002/cctc.202000066.
Curley, Julia B., Bernskoetter, Wesley H., and Hazari, Nilay. Fri . "Additive‐Free Formic Acid Dehydrogenation Using a Pincer‐Supported Iron Catalyst". Germany. doi:10.1002/cctc.202000066.
@article{osti_1599664,
title = {Additive‐Free Formic Acid Dehydrogenation Using a Pincer‐Supported Iron Catalyst},
author = {Curley, Julia B. and Bernskoetter, Wesley H. and Hazari, Nilay},
abstractNote = {},
doi = {10.1002/cctc.202000066},
journal = {ChemCatChem},
number = ,
volume = ,
place = {Germany},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on February 13, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Acceleration of CO 2 insertion into metal hydrides: ligand, Lewis acid, and solvent effects on reaction kinetics
journal, January 2018

  • Heimann, Jessica E.; Bernskoetter, Wesley H.; Hazari, Nilay
  • Chemical Science, Vol. 9, Issue 32
  • DOI: 10.1039/C8SC02535E

Iron catalyzed CO 2 hydrogenation to formate enhanced by Lewis acid co-catalysts
journal, January 2015

  • Zhang, Yuanyuan; MacIntosh, Alex D.; Wong, Janice L.
  • Chemical Science, Vol. 6, Issue 7
  • DOI: 10.1039/C5SC01467K

Well-Defined Bifunctional Iron Catalysts for the Hydrogenation of Ketones: Iron, the New Ruthenium
journal, May 2011

  • Bauer, Gerald; Kirchner, Karl A.
  • Angewandte Chemie International Edition, Vol. 50, Issue 26
  • DOI: 10.1002/anie.201101579

The Mechanism of Borane–Amine Dehydrocoupling with Bifunctional Ruthenium Catalysts
journal, August 2013

  • Marziale, Alexander N.; Friedrich, Anja; Klopsch, Isabel
  • Journal of the American Chemical Society, Vol. 135, Issue 36
  • DOI: 10.1021/ja311092c

Understanding the Individual and Combined Effects of Solvent and Lewis Acid on CO 2 Insertion into a Metal Hydride
journal, May 2019

  • Heimann, Jessica E.; Bernskoetter, Wesley H.; Hazari, Nilay
  • Journal of the American Chemical Society, Vol. 141, Issue 26
  • DOI: 10.1021/jacs.9b05192

Catalytic Formic Acid Dehydrogenation and CO 2 Hydrogenation Using Iron PN R P Pincer Complexes with Isonitrile Ligands
journal, October 2018


Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N , N ′-Diimine Ligand in Water
journal, July 2015

  • Wang, Zhijun; Lu, Sheng-Mei; Li, Jun
  • Chemistry - A European Journal, Vol. 21, Issue 36
  • DOI: 10.1002/chem.201502086

Hydrogen storage: beyond conventional methods
journal, January 2013

  • Dalebrook, Andrew F.; Gan, Weijia; Grasemann, Martin
  • Chemical Communications, Vol. 49, Issue 78
  • DOI: 10.1039/c3cc43836h

First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands
journal, October 2018


Catalytic Dehydrogenation of Formic Acid with Ruthenium‐PNP‐Pincer Complexes: Comparing N‐Methylated and NH‐Ligands
journal, March 2019

  • Agapova, Anastasiya; Alberico, Elisabetta; Kammer, Anja
  • ChemCatChem, Vol. 11, Issue 7
  • DOI: 10.1002/cctc.201801897

Metal-Ligand Cooperation
journal, September 2015

  • Khusnutdinova, Julia R.; Milstein, David
  • Angewandte Chemie International Edition, Vol. 54, Issue 42
  • DOI: 10.1002/anie.201503873

Selective Formic Acid Dehydrogenation Catalyzed by Fe-PNP Pincer Complexes Based on the 2,6-Diaminopyridine Scaffold
journal, September 2016


Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N -Heterocyclic Carbene Complexes of Late Transition Metals
journal, September 2016

  • Jantke, Dominik; Pardatscher, Lorenz; Drees, Markus
  • ChemSusChem, Vol. 9, Issue 19
  • DOI: 10.1002/cssc.201600861

Base‐Free Dehydrogenation of Aqueous and Neat Formic Acid with Iridium(III) Cp*(dipyridylamine) Catalysts
journal, November 2018


Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization
journal, July 2019


CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Amide versus amine ligand paradigm in the direct amination of alcohols with Ru-PNP complexes
journal, January 2018

  • Pingen, Dennis; Choi, Jong-Hoo; Allen, Henry
  • Catalysis Science & Technology, Vol. 8, Issue 15
  • DOI: 10.1039/C8CY00869H

The NH Functional Group in Organometallic Catalysis
journal, March 2013

  • Zhao, Baoguo; Han, Zhaobin; Ding, Kuiling
  • Angewandte Chemie International Edition, Vol. 52, Issue 18
  • DOI: 10.1002/anie.201204921

A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water: A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water
journal, April 2019

  • Fink, Cornel; Laurenczy, Gábor
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 18
  • DOI: 10.1002/ejic.201900344

Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts
journal, February 2017


Nickel-catalyzed release of H 2 from formic acid and a new method for the synthesis of zerovalent Ni(PMe 3 ) 4
journal, January 2016

  • Neary, Michelle C.; Parkin, Gerard
  • Dalton Transactions, Vol. 45, Issue 37
  • DOI: 10.1039/C6DT01499B

Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release
journal, January 2016

  • Mellmann, Dörthe; Sponholz, Peter; Junge, Henrik
  • Chemical Society Reviews, Vol. 45, Issue 14
  • DOI: 10.1039/C5CS00618J

Highly Efficient and Selective Hydrogenation of Aldehydes: A Well-Defined Fe(II) Catalyst Exhibits Noble-Metal Activity
journal, March 2016


Chemical and Physical Solutions for Hydrogen Storage
journal, August 2009

  • Eberle, Ulrich; Felderhoff, Michael; Schüth, Ferdi
  • Angewandte Chemie International Edition, Vol. 48, Issue 36
  • DOI: 10.1002/anie.200806293

Outer sphere hydrogenation catalysis
journal, January 2013

  • Eisenstein, Odile; Crabtree, Robert H.
  • New J. Chem., Vol. 37, Issue 1
  • DOI: 10.1039/C2NJ40659D

Dehydrogenative Coupling of Ethanol and Ester Hydrogenation Catalyzed by Pincer-Type YNP Complexes
journal, September 2016


Alcohol Amination with Ammonia Catalyzed by an Acridine-Based Ruthenium Pincer Complex: A Mechanistic Study
journal, April 2014

  • Ye, Xuan; Plessow, Philipp N.; Brinks, Marion K.
  • Journal of the American Chemical Society, Vol. 136, Issue 16
  • DOI: 10.1021/ja409368a

Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols
journal, October 2017


Selective Iron-Catalyzed N -Formylation of Amines using Dihydrogen and Carbon Dioxide
journal, January 2018


Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature
journal, August 2018

  • Prichatz, Christoph; Trincado, Monica; Tan, Lilin
  • ChemSusChem, Vol. 11, Issue 18
  • DOI: 10.1002/cssc.201801072

Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid
journal, August 2016

  • Iguchi, Masayuki; Himeda, Yuichiro; Manaka, Yuichi
  • ChemSusChem, Vol. 9, Issue 19
  • DOI: 10.1002/cssc.201600697

Quantitative aqueous phase formic acid dehydrogenation using iron(II) based catalysts
journal, November 2016

  • Montandon-Clerc, Mickael; Dalebrook, Andrew F.; Laurenczy, Gábor
  • Journal of Catalysis, Vol. 343
  • DOI: 10.1016/j.jcat.2015.11.012

Renewable energy resources: Current status, future prospects and their enabling technology
journal, November 2014

  • Ellabban, Omar; Abu-Rub, Haitham; Blaabjerg, Frede
  • Renewable and Sustainable Energy Reviews, Vol. 39
  • DOI: 10.1016/j.rser.2014.07.113

Selective conversion of alcohols in water to carboxylic acids by in situ generated ruthenium trans dihydrido carbonyl PNP complexes
journal, January 2014

  • Choi, Jong-Hoo; Heim, Leo E.; Ahrens, Mike
  • Dalton Trans., Vol. 43, Issue 46
  • DOI: 10.1039/C4DT01634C