skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on February 10, 2021

Title: Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires

Abstract

Materials possessing strong midinfrared responses are of current interest because of their potential application to long-wavelength metamaterials, photonic devices, molecular detection, and catalysis. Here, we utilize high-energy resolution (80 cm -1, 10 meV) electron-energy-loss spectroscopy (EELS) in a monochromated and aberration-corrected scanning transmission electron microscope (STEM) to resolve multipolar surface plasmon resonances (SPRs), sometimes called Fabry-Pérot (FP) resonances, in gold nanowires with mode energies spanning from ~1000 to 8000 cm -1. STEM-EELS provides access to these mid- to near-IR responses in a single acquisition, avoiding the difficulties inherent in obtaining the same data using near-field optical techniques. The experimentally measured FP resonance energies and linewidths, together with analytical modeling and full-wave numerical electrodynamics simulations, provide a comprehensive picture of the radiative and intrinsic contributions to the total damping rates. We find some FP modes with dephasing times >60fs, which is almost twice the longest previously reported plasmon dephasing time for individual Au nanoparticles in the infrared. The long dephasing times and the broad tunability of the FP resonance energies throughout the infrared region suggest additional opportunities for harnessing infrared plasmonic energy before dephasing occurs.

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1598862
Grant/Contract Number:  
SC0018040
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 101; Journal Issue: 8; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Wu, Yueying, Hu, Zhongwei, Kong, Xiang-Tian, Idrobo, Juan Carlos, Nixon, Austin G., Rack, Philip D., Masiello, David J., and Camden, Jon P. Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires. United States: N. p., 2020. Web. doi:10.1103/PhysRevB.101.085409.
Wu, Yueying, Hu, Zhongwei, Kong, Xiang-Tian, Idrobo, Juan Carlos, Nixon, Austin G., Rack, Philip D., Masiello, David J., & Camden, Jon P. Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires. United States. doi:10.1103/PhysRevB.101.085409.
Wu, Yueying, Hu, Zhongwei, Kong, Xiang-Tian, Idrobo, Juan Carlos, Nixon, Austin G., Rack, Philip D., Masiello, David J., and Camden, Jon P. Mon . "Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires". United States. doi:10.1103/PhysRevB.101.085409.
@article{osti_1598862,
title = {Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires},
author = {Wu, Yueying and Hu, Zhongwei and Kong, Xiang-Tian and Idrobo, Juan Carlos and Nixon, Austin G. and Rack, Philip D. and Masiello, David J. and Camden, Jon P.},
abstractNote = {Materials possessing strong midinfrared responses are of current interest because of their potential application to long-wavelength metamaterials, photonic devices, molecular detection, and catalysis. Here, we utilize high-energy resolution (80 cm-1, 10 meV) electron-energy-loss spectroscopy (EELS) in a monochromated and aberration-corrected scanning transmission electron microscope (STEM) to resolve multipolar surface plasmon resonances (SPRs), sometimes called Fabry-Pérot (FP) resonances, in gold nanowires with mode energies spanning from ~1000 to 8000 cm-1. STEM-EELS provides access to these mid- to near-IR responses in a single acquisition, avoiding the difficulties inherent in obtaining the same data using near-field optical techniques. The experimentally measured FP resonance energies and linewidths, together with analytical modeling and full-wave numerical electrodynamics simulations, provide a comprehensive picture of the radiative and intrinsic contributions to the total damping rates. We find some FP modes with dephasing times >60fs, which is almost twice the longest previously reported plasmon dephasing time for individual Au nanoparticles in the infrared. The long dephasing times and the broad tunability of the FP resonance energies throughout the infrared region suggest additional opportunities for harnessing infrared plasmonic energy before dephasing occurs.},
doi = {10.1103/PhysRevB.101.085409},
journal = {Physical Review B},
number = 8,
volume = 101,
place = {United States},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on February 10, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems
journal, July 2007


A Review of Surface Plasmon Resonance-Enhanced Photocatalysis
journal, October 2012

  • Hou, Wenbo; Cronin, Stephen B.
  • Advanced Functional Materials, Vol. 23, Issue 13, p. 1612-1619
  • DOI: 10.1002/adfm.201202148

Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions
journal, January 2006


Exploitation of Localized Surface Plasmon Resonance
journal, October 2004


Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy
journal, December 2017


Review of mid-infrared plasmonic materials
journal, January 2015

  • Zhong, Yujun; Malagari, Shyamala Devi; Hamilton, Travis
  • Journal of Nanophotonics, Vol. 9, Issue 1
  • DOI: 10.1117/1.JNP.9.093791

Low loss silicon waveguides for the mid-infrared
journal, January 2011

  • Mashanovich, Goran Z.; Milošević, Milan M.; Nedeljkovic, Milos
  • Optics Express, Vol. 19, Issue 8
  • DOI: 10.1364/OE.19.007112

Plasmonic Enhancement of Vibrational Excitations in the Infrared
journal, May 2013

  • Neubrech, F.; Pucci, A.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, Issue 3
  • DOI: 10.1109/JSTQE.2012.2227302

Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas
journal, February 2017


Resonant Coupling between Molecular Vibrations and Localized Surface Plasmon Resonance of Faceted Metal Oxide Nanocrystals
journal, March 2017


Surface-Enhanced Molecular Electron Energy Loss Spectroscopy
journal, April 2018


Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods
journal, October 1999

  • Link, Stephan; El-Sayed, Mostafa A.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 40
  • DOI: 10.1021/jp9917648

Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping
journal, December 1993


Drastic Reduction of Plasmon Damping in Gold Nanorods
journal, January 2002


Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas
journal, January 2011

  • Razzari, Luca; Toma, Andrea; Shalaby, Mostafa
  • Optics Express, Vol. 19, Issue 27
  • DOI: 10.1364/OE.19.026088

Comparative Analysis of Metals and Alternative Infrared Plasmonic Materials
journal, October 2017


Near-Field Scanning Optical Microscopy
journal, October 1999


Near-Field Optical Microscopy and Spectroscopy with Pointed Probes
journal, May 2006


Vibrational spectroscopy in the electron microscope
journal, October 2014

  • Krivanek, Ondrej L.; Lovejoy, Tracy C.; Dellby, Niklas
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13870

Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope
journal, January 2019


Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared regime
journal, April 2018


Characterization of the Electron- and Photon-Driven Plasmonic Excitations of Metal Nanorods
journal, July 2012

  • Bigelow, Nicholas W.; Vaschillo, Alex; Iberi, Vighter
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn302980u

Signatures of Fano Interferences in the Electron Energy Loss Spectroscopy and Cathodoluminescence of Symmetry-Broken Nanorod Dimers
journal, April 2013

  • Bigelow, Nicholas W.; Vaschillo, Alex; Camden, Jon P.
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn401161n

Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe
journal, April 2011

  • Rossouw, D.; Couillard, M.; Vickery, J.
  • Nano Letters, Vol. 11, Issue 4
  • DOI: 10.1021/nl200634w

Surface plasmon modes of a single silver nanorod: an electron energy loss study
journal, January 2011

  • Nicoletti, Olivia; Wubs, Martijn; Mortensen, N. Asger
  • Optics Express, Vol. 19, Issue 16
  • DOI: 10.1364/OE.19.015371

Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons
journal, November 2009

  • Cubukcu, Ertugrul; Capasso, Federico
  • Applied Physics Letters, Vol. 95, Issue 20
  • DOI: 10.1063/1.3262947

Plasmonic Response of Bent Silver Nanowires for Nanophotonic Subwavelength Waveguiding
journal, February 2013


High-Resolution Imaging and Spectroscopy of Multipolar Plasmonic Resonances in Aluminum Nanoantennas
journal, September 2014

  • Martin, Jérôme; Kociak, Mathieu; Mahfoud, Zackaria
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl501850m

Single Particle Plasmon Spectroscopy of Silver Nanowires and Gold Nanorods
journal, October 2008

  • NʼGom, Moussa; Ringnalda, Jan; Mansfield, John F.
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl801504v

Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods
journal, September 2009


Direct Observation of Plasmonic Modes in Au Nanowires Using High-Resolution Cathodoluminescence Spectroscopy
journal, September 2007

  • Vesseur, Ernst Jan R.; de Waele, René; Kuttge, Martin
  • Nano Letters, Vol. 7, Issue 9
  • DOI: 10.1021/nl071480w

Silver Nanowires as Surface Plasmon Resonators
journal, December 2005


Propagation Lengths and Group Velocities of Plasmons in Chemically Synthesized Gold and Silver Nanowires
journal, December 2011

  • Wild, Barbara; Cao, Lina; Sun, Yugang
  • ACS Nano, Vol. 6, Issue 1
  • DOI: 10.1021/nn203802e

Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam
journal, January 2009

  • Chu, Ming-Wen; Myroshnychenko, Viktor; Chen, Cheng Hsuan
  • Nano Letters, Vol. 9, Issue 1
  • DOI: 10.1021/nl803270x

Surface Plasmon Damping Quantified with an Electron Nanoprobe
journal, February 2013

  • Bosman, Michel; Ye, Enyi; Tan, Shu Fen
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01312

Radiation Damping in Surface-Enhanced Raman Scattering
journal, April 1982


Depolarization field of spheroidal particles
journal, January 2009


Spectroscopic properties of molecules interacting with small dielectric particles
journal, August 1981

  • Gersten, Joel; Nitzan, Abraham
  • The Journal of Chemical Physics, Vol. 75, Issue 3
  • DOI: 10.1063/1.442161

Surface-Plasmon Resonances in Single Metallic Nanoparticles
journal, May 1998


Optical characterization of single plasmonic nanoparticles
journal, January 2015

  • Olson, Jana; Dominguez-Medina, Sergio; Hoggard, Anneli
  • Chemical Society Reviews, Vol. 44, Issue 1
  • DOI: 10.1039/C4CS00131A

Plasmonic Surface Lattice Resonances: A Review of Properties and Applications
journal, June 2018


Monochromated STEM with a 30 meV-wide, atom-sized electron probe
journal, January 2013

  • Krivanek, Ondrej L.; Lovejoy, Tracy C.; Dellby, Niklas
  • Microscopy, Vol. 62, Issue 1
  • DOI: 10.1093/jmicro/dfs089

Discrete-Dipole Approximation For Scattering Calculations
journal, January 1994

  • Draine, Bruce T.; Flatau, Piotr J.
  • Journal of the Optical Society of America A, Vol. 11, Issue 4
  • DOI: 10.1364/JOSAA.11.001491

Scattering and Absorption of Light by Nonspherical Dielectric Grains
journal, December 1973

  • Purcell, Edward M.; Pennypacker, Carlton R.
  • The Astrophysical Journal, Vol. 186
  • DOI: 10.1086/152538

Examining Substrate-Induced Plasmon Mode Splitting and Localization in Truncated Silver Nanospheres with Electron Energy Loss Spectroscopy
journal, June 2015

  • Li, Guoliang; Cherqui, Charles; Wu, Yueying
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 13
  • DOI: 10.1021/acs.jpclett.5b00961

Combined Tight-Binding and Numerical Electrodynamics Understanding of the STEM/EELS Magneto-optical Responses of Aromatic Plasmon-Supporting Metal Oligomers
journal, September 2014

  • Cherqui, Charles; Bigelow, Nicholas W.; Vaschillo, Alex
  • ACS Photonics, Vol. 1, Issue 10
  • DOI: 10.1021/ph5002268

Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS
journal, April 2015


Optical dielectric function of gold
journal, December 2012


Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride
journal, January 2012

  • Kischkat, Jan; Peters, Sven; Gruska, Bernd
  • Applied Optics, Vol. 51, Issue 28
  • DOI: 10.1364/AO.51.006789