DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enterococcus faecalis α1–2‐mannosidase (EfMan‐I): an efficient catalyst for glycoprotein N‐glycan modification

Abstract

While multiple α 1–2‐mannosidases are necessary for glycoprotein N‐glycan maturation in vertebrates, a single bacterial α1–2‐mannosidase can be sufficient to cleave all α1–2‐linked mannose residues in host glycoprotein N‐glycans. We report here the characterization and crystal structure of a new α1–2‐mannosidase (EfMan‐I) from Enterococcus faecalis , a Gram‐positive opportunistic human pathogen. EfMan‐I catalyzes the cleavage of α1–2‐mannose from not only oligomannoses but also high‐mannose‐type N‐glycans on glycoproteins. Its 2.15 Å resolution crystal structure reveals a two‐domain enzyme fold similar to other CAZy GH92 mannosidases. An unexpected potassium ion was observed bridging two domains near the active site. These findings support EfMan‐I as an effective catalyst for in vitro N‐glycan modification of glycoproteins with high‐mannose‐type N‐glycans.

Authors:
 [1];  [1];  [1];  [1];  [2];  [3]; ORCiD logo [1]
  1. Department of Chemistry University of California Davis CA USA
  2. Department of Chemistry University of California Davis CA USA, Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China
  3. Department of Chemistry University of California Davis CA USA, Department of Molecular and Cellular Biology University of California Davis CA USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1598708
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
FEBS Letters
Additional Journal Information:
Journal Name: FEBS Letters Journal Volume: 594 Journal Issue: 3; Journal ID: ISSN 0014-5793
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Netherlands
Language:
English

Citation Formats

Li, Yanhong, Li, Riyao, Yu, Hai, Sheng, Xue, Wang, Jing, Fisher, Andrew J., and Chen, Xi. Enterococcus faecalis α1–2‐mannosidase (EfMan‐I): an efficient catalyst for glycoprotein N‐glycan modification. Netherlands: N. p., 2019. Web. doi:10.1002/1873-3468.13618.
Li, Yanhong, Li, Riyao, Yu, Hai, Sheng, Xue, Wang, Jing, Fisher, Andrew J., & Chen, Xi. Enterococcus faecalis α1–2‐mannosidase (EfMan‐I): an efficient catalyst for glycoprotein N‐glycan modification. Netherlands. https://doi.org/10.1002/1873-3468.13618
Li, Yanhong, Li, Riyao, Yu, Hai, Sheng, Xue, Wang, Jing, Fisher, Andrew J., and Chen, Xi. Tue . "Enterococcus faecalis α1–2‐mannosidase (EfMan‐I): an efficient catalyst for glycoprotein N‐glycan modification". Netherlands. https://doi.org/10.1002/1873-3468.13618.
@article{osti_1598708,
title = {Enterococcus faecalis α1–2‐mannosidase (EfMan‐I): an efficient catalyst for glycoprotein N‐glycan modification},
author = {Li, Yanhong and Li, Riyao and Yu, Hai and Sheng, Xue and Wang, Jing and Fisher, Andrew J. and Chen, Xi},
abstractNote = {While multiple α 1–2‐mannosidases are necessary for glycoprotein N‐glycan maturation in vertebrates, a single bacterial α1–2‐mannosidase can be sufficient to cleave all α1–2‐linked mannose residues in host glycoprotein N‐glycans. We report here the characterization and crystal structure of a new α1–2‐mannosidase (EfMan‐I) from Enterococcus faecalis , a Gram‐positive opportunistic human pathogen. EfMan‐I catalyzes the cleavage of α1–2‐mannose from not only oligomannoses but also high‐mannose‐type N‐glycans on glycoproteins. Its 2.15 Å resolution crystal structure reveals a two‐domain enzyme fold similar to other CAZy GH92 mannosidases. An unexpected potassium ion was observed bridging two domains near the active site. These findings support EfMan‐I as an effective catalyst for in vitro N‐glycan modification of glycoproteins with high‐mannose‐type N‐glycans.},
doi = {10.1002/1873-3468.13618},
journal = {FEBS Letters},
number = 3,
volume = 594,
place = {Netherlands},
year = {Tue Oct 08 00:00:00 EDT 2019},
month = {Tue Oct 08 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/1873-3468.13618

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The crystal structure of the endoglucanase Cel10, a family 8 glycosyl hydrolase from Klebsiella pneumoniae
journal, November 2016

  • Attigani, Ayman; Sun, Lifang; Wang, Qing
  • Acta Crystallographica Section F Structural Biology Communications, Vol. 72, Issue 12
  • DOI: 10.1107/S2053230X16017891

A “Tag-and-Modify” Approach to Site-Selective Protein Modification
journal, September 2011

  • Chalker, Justin M.; Bernardes, Gonçalo J. L.; Davis, Benjamin G.
  • Accounts of Chemical Research, Vol. 44, Issue 9
  • DOI: 10.1021/ar200056q

Glycosylation of Therapeutic Proteins: An Effective Strategy to Optimize Efficacy
journal, January 2010


Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

Enzymatic Glycoprotein Synthesis:  Preparation of Ribonuclease Glycoforms via Enzymatic Glycopeptide Condensation and Glycosylation
journal, March 1997

  • Witte, Krista; Sears, Pamela; Martin, Richard
  • Journal of the American Chemical Society, Vol. 119, Issue 9
  • DOI: 10.1021/ja961846z

The Structure of Bovine Lysosomal α-Mannosidase Suggests a Novel Mechanism for Low-pH Activation
journal, March 2003

  • Heikinheimo, Pirkko; Helland, Ronny; Leiros, Hanna-Kirsti Schrøder
  • Journal of Molecular Biology, Vol. 327, Issue 3
  • DOI: 10.1016/S0022-2836(03)00172-4

Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins
journal, August 2009


Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway
journal, November 2016

  • Xiang, Yong; Karaveg, Khanita; Moremen, Kelley W.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 49
  • DOI: 10.1073/pnas.1611213113

Insights into the Mechanism of Drosophila melanogaster Golgi α-Mannosidase II through the Structural Analysis of Covalent Reaction Intermediates
journal, September 2003

  • Numao, Shin; Kuntz, Douglas A.; Withers, Stephen G.
  • Journal of Biological Chemistry, Vol. 278, Issue 48
  • DOI: 10.1074/jbc.M309249200

A 1,2-α-d-mannosidase from a bacillus sp.: purification, characterization, and mode of action
journal, January 1994


Chemical Synthesis of a Glycoprotein Having an Intact Human Complex-Type Sialyloligosaccharide under the Boc and Fmoc Synthetic Strategies
journal, January 2008

  • Yamamoto, Naoki; Tanabe, Yasutaka; Okamoto, Ryo
  • Journal of the American Chemical Society, Vol. 130, Issue 2
  • DOI: 10.1021/ja072543f

Updating the sequence-based classification of glycosyl hydrolases
journal, June 1996

  • Henrissat, Bernard; Bairoch, Amos
  • Biochemical Journal, Vol. 316, Issue 2
  • DOI: 10.1042/bj3160695

Model systems for the study of Enterococcal colonization and infection
journal, May 2017


Analysis of protein glycosylation by mass spectrometry
journal, June 2007


Plant protein glycosylation
journal, February 2016


Integration, scaling, space-group assignment and post-refinement
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 133-144
  • DOI: 10.1107/S0907444909047374

XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Humanization of Yeast to Produce Complex Terminally Sialylated Glycoproteins
journal, September 2006


An endo-β-N-acetylglucosaminidase from Enterococcus faecalisV583 responsible for the hydrolysis of high-mannose and hybrid-type N-linked glycans
journal, October 2011


Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence
journal, January 2017


Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology
journal, December 2008

  • Jacobs, Pieter P.; Geysens, Steven; Vervecken, Wouter
  • Nature Protocols, Vol. 4, Issue 1
  • DOI: 10.1038/nprot.2008.213

Pharmacological significance of glycosylation in therapeutic proteins
journal, December 2009


Posttranslational Modifications and the Immunogenicity of Biotherapeutics
journal, January 2016


Post-translational modifications in the context of therapeutic proteins
journal, October 2006

  • Walsh, Gary; Jefferis, Roy
  • Nature Biotechnology, Vol. 24, Issue 10
  • DOI: 10.1038/nbt1252

Production of an Endo-β-N-Acetylglucosaminidase Activity Mediates Growth ofEnterococcus faecalis on a High-Mannose-Type Glycoprotein
journal, January 2000


Atomic (0.94 Å) resolution structure of an inverting glycosidase in complex with substrate
journal, March 2002

  • Guérin, Diego M. A.; Lascombe, Marie-Bernard; Costabel, Marcelo
  • Journal of Molecular Biology, Vol. 316, Issue 5
  • DOI: 10.1006/jmbi.2001.5404

Optimization of humanized IgGs in glycoengineered Pichia pastoris
journal, January 2006

  • Li, Huijuan; Sethuraman, Natarajan; Stadheim, Terrance A.
  • Nature Biotechnology, Vol. 24, Issue 2, p. 210-215
  • DOI: 10.1038/nbt1178

Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence
journal, May 2007


Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Influence of Substrate Conformation on the Deglycosylation of Ribonuclease B by Recombinant Yeast Peptide: N-glycanase
journal, January 2007


Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

Solvent content of protein crystals
journal, April 1968


Chemical and Chemoenzymatic Synthesis of Glycoproteins for Deciphering Functions
journal, January 2014


Crystal Structure and Evolution of a Prokaryotic Glucoamylase
journal, March 2003


Glycoprotein Synthesis: An Update
journal, January 2009

  • Gamblin, David P.; Scanlan, Eoin M.; Davis, Benjamin G.
  • Chemical Reviews, Vol. 109, Issue 1
  • DOI: 10.1021/cr078291i

Mechanistic insights into a Ca2+-dependent family of α-mannosidases in a human gut symbiont
journal, December 2009

  • Zhu, Yanping; Suits, Michael D. L.; Thompson, Andrew J.
  • Nature Chemical Biology, Vol. 6, Issue 2
  • DOI: 10.1038/nchembio.278

How glycan metabolism shapes the human gut microbiota
journal, April 2012

  • Koropatkin, Nicole M.; Cameron, Elizabeth A.; Martens, Eric C.
  • Nature Reviews Microbiology, Vol. 10, Issue 5
  • DOI: 10.1038/nrmicro2746

A classification of glycosyl hydrolases based on amino acid sequence similarities
journal, December 1991


Structural Insights into the Substrate Specificity and Function of Escherichia coli K12 YgjK, a Glucosidase Belonging to the Glycoside Hydrolase Family 63
journal, August 2008

  • Kurakata, Yuma; Uechi, Akiko; Yoshida, Hiromi
  • Journal of Molecular Biology, Vol. 381, Issue 1
  • DOI: 10.1016/j.jmb.2008.05.061

New families in the classification of glycosyl hydrolases based on amino acid sequence similarities
journal, August 1993

  • Henrissat, B.; Bairoch, A.
  • Biochemical Journal, Vol. 293, Issue 3, p. 781-788
  • DOI: 10.1042/bj2930781

Sequential processing of mannose-containing glycans by two α-mannosidases from Solitalea canadensis
journal, February 2016


Recombinant Coagulation Factor IX
journal, February 1998


A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes
journal, November 2012

  • Tiels, Petra; Baranova, Ekaterina; Piens, Kathleen
  • Nature Biotechnology, Vol. 30, Issue 12
  • DOI: 10.1038/nbt.2427

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis.
journal, September 1989

  • Sahm, D. F.; Kissinger, J.; Gilmore, M. S.
  • Antimicrobial Agents and Chemotherapy, Vol. 33, Issue 9
  • DOI: 10.1128/AAC.33.9.1588

Emerging Technologies for Making Glycan-Defined Glycoproteins
journal, December 2011

  • Wang, Lai-Xi; Lomino, Joseph V.
  • ACS Chemical Biology, Vol. 7, Issue 1
  • DOI: 10.1021/cb200429n