skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano

Abstract

Volcanic tremor is key to our understanding of active magmatic systems, but due to its complexity, there is still a debate concerning its origins and how it can be used to characterize eruptive dynamics. In this study we leverage machine learning techniques using 6 years of continuous seismic data from the Piton de la Fournaise volcano (La Réunion island) to describe specific patterns of seismic signals recorded during eruptions. These results unveil what we interpret as signals associated with various eruptive dynamics of the volcano, including the effusion of a large volume of lava during the August–October 2015 eruption as well as the closing of the eruptive vent during the September–November 2018 eruption. The machine learning workflow we describe can easily be applied to other active volcanoes, potentially leading to an enhanced understanding of the temporal and spatial evolution of volcanic eruptions.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]
  1. Space Data Science and Systems GroupLos Alamos National Laboratory Los Alamos NM USA, Geophysics GroupLos Alamos National Laboratory Los Alamos NM USA
  2. Université de Paris, Institut de physique du globe de Paris, CNRS Paris France, Observatoire volcanologique du Piton de la Fournaise, Institut de physique du globe de Paris La Plaine des Cafres France
  3. Geophysics GroupLos Alamos National Laboratory Los Alamos NM USA
  4. Observatoire volcanologique du Piton de la Fournaise, Institut de physique du globe de Paris La Plaine des Cafres France
  5. ISterreUniversité Grenoble Alpes Gières France
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; European Research Council (ERC)
OSTI Identifier:
1598689
Alternate Identifier(s):
OSTI ID: 1597358; OSTI ID: 1598691
Report Number(s):
[LA-UR-19-29716]
[Journal ID: ISSN 0094-8276]
Grant/Contract Number:  
[20180475DR; 89233218CNA000001; 817803]
Resource Type:
Published Article
Journal Name:
Geophysical Research Letters
Additional Journal Information:
[Journal Name: Geophysical Research Letters Journal Volume: 47 Journal Issue: 3]; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

Ren, C. X., Peltier, A., Ferrazzini, V., Rouet‐Leduc, B., Johnson, P. A., and Brenguier, F. Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano. United States: N. p., 2020. Web. doi:10.1029/2019GL085523.
Ren, C. X., Peltier, A., Ferrazzini, V., Rouet‐Leduc, B., Johnson, P. A., & Brenguier, F. Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano. United States. doi:10.1029/2019GL085523.
Ren, C. X., Peltier, A., Ferrazzini, V., Rouet‐Leduc, B., Johnson, P. A., and Brenguier, F. Tue . "Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano". United States. doi:10.1029/2019GL085523.
@article{osti_1598689,
title = {Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano},
author = {Ren, C. X. and Peltier, A. and Ferrazzini, V. and Rouet‐Leduc, B. and Johnson, P. A. and Brenguier, F.},
abstractNote = {Volcanic tremor is key to our understanding of active magmatic systems, but due to its complexity, there is still a debate concerning its origins and how it can be used to characterize eruptive dynamics. In this study we leverage machine learning techniques using 6 years of continuous seismic data from the Piton de la Fournaise volcano (La Réunion island) to describe specific patterns of seismic signals recorded during eruptions. These results unveil what we interpret as signals associated with various eruptive dynamics of the volcano, including the effusion of a large volume of lava during the August–October 2015 eruption as well as the closing of the eruptive vent during the September–November 2018 eruption. The machine learning workflow we describe can easily be applied to other active volcanoes, potentially leading to an enhanced understanding of the temporal and spatial evolution of volcanic eruptions.},
doi = {10.1029/2019GL085523},
journal = {Geophysical Research Letters},
number = [3],
volume = [47],
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1029/2019GL085523

Save / Share:

Works referenced in this record:

Machine Learning Reveals the State of Intermittent Frictional Dynamics in a Sheared Granular Fault
journal, July 2019

  • Ren, C. X.; Dorostkar, O.; Rouet‐Leduc, B.
  • Geophysical Research Letters, Vol. 46, Issue 13
  • DOI: 10.1029/2019GL082706

Two types of volcanic tremor changed with eruption style during 1986 Izu-Oshima eruption: TREMOR DURING 1986 IZU-OSHIMA ERUPTION
journal, April 2016

  • Kurokawa, Aika; Takeo, Minoru; Kurita, Kei
  • Journal of Geophysical Research: Solid Earth, Vol. 121, Issue 4
  • DOI: 10.1002/2015JB012500

Seismic tremors and magma wagging during explosive volcanism
journal, February 2011


Estimating Fault Friction From Seismic Signals in the Laboratory
journal, February 2018

  • Rouet‐Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.
  • Geophysical Research Letters, Vol. 45, Issue 3
  • DOI: 10.1002/2017GL076708

Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)
journal, April 2017


Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field
journal, May 2018

  • Holtzman, Benjamin K.; Paté, Arthur; Paisley, John
  • Science Advances, Vol. 4, Issue 5
  • DOI: 10.1126/sciadv.aao2929

Similarity of fast and slow earthquakes illuminated by machine learning
journal, December 2018

  • Hulbert, Claudia; Rouet-Leduc, Bertrand; Johnson, Paul A.
  • Nature Geoscience, Vol. 12, Issue 1
  • DOI: 10.1038/s41561-018-0272-8

Continuous chatter of the Cascadia subduction zone revealed by machine learning
journal, December 2018

  • Rouet-Leduc, Bertrand; Hulbert, Claudia; Johnson, Paul A.
  • Nature Geoscience, Vol. 12, Issue 1
  • DOI: 10.1038/s41561-018-0274-6

Applications of clustering in exploration seismology
journal, October 1984


Stochastic gradient boosting
journal, February 2002


Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand
journal, September 2015


Continuous tracking of volcanic tremor at Mount Etna, Italy
journal, May 2007


Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm
journal, June 2017


Pairwise Association of Seismic Arrivals with Convolutional Neural Networks
journal, January 2019

  • McBrearty, Ian W.; Delorey, Andrew A.; Johnson, Paul A.
  • Seismological Research Letters, Vol. 90, Issue 2A
  • DOI: 10.1785/0220180326

Detection and Classification of Continuous Volcano-Seismic Signals With Recurrent Neural Networks
journal, April 2019

  • Titos, Manuel; Bueno, Angel; Garcia, Luz
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, Issue 4
  • DOI: 10.1109/TGRS.2018.2870202

PhaseLink: A Deep Learning Approach to Seismic Phase Association
journal, January 2019

  • Ross, Zachary E.; Yue, Yisong; Meier, Men‐Andrin
  • Journal of Geophysical Research: Solid Earth, Vol. 124, Issue 1
  • DOI: 10.1029/2018JB016674

Single-station monitoring of volcanoes using seismic ambient noise: SINGLE-STATION MONITORING OF VOLCANOES
journal, August 2016

  • De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin
  • Geophysical Research Letters, Vol. 43, Issue 16
  • DOI: 10.1002/2016GL070078

Constraining Spatiotemporal Characteristics of Magma Migration at Piton De La Fournaise Volcano From Pre‐eruptive Seismicity
journal, January 2019

  • Duputel, Z.; Lengliné, O.; Ferrazzini, V.
  • Geophysical Research Letters, Vol. 46, Issue 1
  • DOI: 10.1029/2018GL080895

Rift zones and magma plumbing system of Piton de la Fournaise volcano: How do they differ from Hawaii and Etna?
journal, September 2015


Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes
journal, January 2003


XGBoost: A Scalable Tree Boosting System
conference, January 2016

  • Chen, Tianqi; Guestrin, Carlos
  • Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '16
  • DOI: 10.1145/2939672.2939785

Machine Learning Predicts Laboratory Earthquakes: MACHINE LEARNING PREDICTS LAB QUAKES
journal, September 2017

  • Rouet-Leduc, Bertrand; Hulbert, Claudia; Lubbers, Nicholas
  • Geophysical Research Letters, Vol. 44, Issue 18
  • DOI: 10.1002/2017GL074677

Long-period volcano seismicity: its source and use in eruption forecasting
journal, March 1996


A tutorial on spectral clustering
journal, August 2007


Machine Learning for Volcano-Seismic Signals: Challenges and Perspectives
journal, March 2018

  • Malfante, Marielle; Dalla Mura, Mauro; Metaxian, Jean-Philippe
  • IEEE Signal Processing Magazine, Vol. 35, Issue 2
  • DOI: 10.1109/MSP.2017.2779166

Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: A review of geophysical and geochemical data
journal, July 2009

  • Peltier, Aline; Bachèlery, Patrick; Staudacher, Thomas
  • Journal of Volcanology and Geothermal Research, Vol. 184, Issue 1-2
  • DOI: 10.1016/j.jvolgeores.2008.12.008

Location of tremor sources and estimation of lava output using tremor source amplitude on the Piton de la Fournaise volcano: 1. Location of tremor sources
journal, October 2005


Location of tremor sources and estimation of lava output using tremor source amplitude on the Piton de la Fournaise volcano: 2. Estimation of lava output
journal, October 2005


Resonance of a fluid-driven crack: Radiation properties and implications for the source of long-period events and harmonic tremor
journal, May 1988