skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 12, 2020

Title: Generation and acceleration of electron bunches from a plasma photocathode

Abstract

Plasma waves generated in the wake of intense, relativistic laser or particle beams can accelerate electron bunches to gigaelectronvolt energies in centimetre-scale distances. This allows the realization of compact accelerators with emerging applications ranging from modern light sources such as the free-electron laser to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre wakefields can accelerate witness electron bunches that are either externally injected or captured from the background plasma. Here in this work, we demonstrate optically triggered injection and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ‘plasma photocathode’ decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical density down-ramp injection and is an important step towards the generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultrahigh-brightness beams.

Authors:
 [1];  [2];  [3];  [4]; ORCiD logo [5];  [5]; ORCiD logo [5];  [5];  [2]; ORCiD logo [5];  [6];  [7];  [8];  [8];  [8]; ORCiD logo [8]; ORCiD logo [9];  [9];  [10];  [10] more »;  [11];  [12]; ORCiD logo [13]; ORCiD logo [14];  [8];  [8];  [6]; ORCiD logo [5] « less
  1. Univ. of California, Los Angeles, CA (United States); Zhejiang Univ. of Technology, Hangzhou (China)
  2. Univ. of Hamburg (Germany)
  3. Univ. of Strathclyde, Glasgow (United Kingdom); Sci-Tech Daresbury, Cheshire (United Kingdom). Cockcroft Inst.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  4. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  5. Univ. of Strathclyde, Glasgow (United Kingdom); Sci-Tech Daresbury, Cheshire (United Kingdom). Cockcroft Inst.
  6. Univ. of California, Los Angeles, CA (United States)
  7. Univ. of Colorado, Boulder, CO (United States)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  9. Univ. of Oslo (Norway)
  10. Univ. of Texas, Austin, TX (United States)
  11. Univ. of California, Los Angeles, CA (United States); RadiaBeam Technologies, Santa Monica, CA (United States)
  12. RadiaBeam Technologies, Santa Monica, CA (United States)
  13. RadiaSoft LLC, Boulder, CO (United States)
  14. Tech-X Corporation, Boulder, CO (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
H2020 EuPRAXIA; Engineering and Physical Sciences Research Council (EPSRC); Research Council of Norway; National Science Foundation (NSF); USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1598416
Grant/Contract Number:  
[AC02-76SF00515; SC0009914; SC0009533; 653782; EP/N028694/1; 230450; SC0011617; PHY-1734319; AC02-05CH11231; SC0013855; PHY 1734281]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
[ Journal Volume: 15; Journal Issue: 11]; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Experimental particle physics; Plasma-based accelerators

Citation Formats

Deng, A., Karger, O. S., Heinemann, T., Knetsch, A., Scherkl, P., Manahan, G. G., Beaton, A., Ullmann, D., Wittig, G., Habib, A. F., Xi, Y., Litos, M. D., O’Shea, B. D., Gessner, S., Clarke, C. I., Green, S. Z., Lindstrøm, C. A., Adli, E., Zgadzaj, R., Downer, M. C., Andonian, G., Murokh, A., Bruhwiler, D. L., Cary, J. R., Hogan, M. J., Yakimenko, V., Rosenzweig, J. B., and Hidding, B. Generation and acceleration of electron bunches from a plasma photocathode. United States: N. p., 2019. Web. doi:10.1038/s41567-019-0610-9.
Deng, A., Karger, O. S., Heinemann, T., Knetsch, A., Scherkl, P., Manahan, G. G., Beaton, A., Ullmann, D., Wittig, G., Habib, A. F., Xi, Y., Litos, M. D., O’Shea, B. D., Gessner, S., Clarke, C. I., Green, S. Z., Lindstrøm, C. A., Adli, E., Zgadzaj, R., Downer, M. C., Andonian, G., Murokh, A., Bruhwiler, D. L., Cary, J. R., Hogan, M. J., Yakimenko, V., Rosenzweig, J. B., & Hidding, B. Generation and acceleration of electron bunches from a plasma photocathode. United States. doi:10.1038/s41567-019-0610-9.
Deng, A., Karger, O. S., Heinemann, T., Knetsch, A., Scherkl, P., Manahan, G. G., Beaton, A., Ullmann, D., Wittig, G., Habib, A. F., Xi, Y., Litos, M. D., O’Shea, B. D., Gessner, S., Clarke, C. I., Green, S. Z., Lindstrøm, C. A., Adli, E., Zgadzaj, R., Downer, M. C., Andonian, G., Murokh, A., Bruhwiler, D. L., Cary, J. R., Hogan, M. J., Yakimenko, V., Rosenzweig, J. B., and Hidding, B. Mon . "Generation and acceleration of electron bunches from a plasma photocathode". United States. doi:10.1038/s41567-019-0610-9.
@article{osti_1598416,
title = {Generation and acceleration of electron bunches from a plasma photocathode},
author = {Deng, A. and Karger, O. S. and Heinemann, T. and Knetsch, A. and Scherkl, P. and Manahan, G. G. and Beaton, A. and Ullmann, D. and Wittig, G. and Habib, A. F. and Xi, Y. and Litos, M. D. and O’Shea, B. D. and Gessner, S. and Clarke, C. I. and Green, S. Z. and Lindstrøm, C. A. and Adli, E. and Zgadzaj, R. and Downer, M. C. and Andonian, G. and Murokh, A. and Bruhwiler, D. L. and Cary, J. R. and Hogan, M. J. and Yakimenko, V. and Rosenzweig, J. B. and Hidding, B.},
abstractNote = {Plasma waves generated in the wake of intense, relativistic laser or particle beams can accelerate electron bunches to gigaelectronvolt energies in centimetre-scale distances. This allows the realization of compact accelerators with emerging applications ranging from modern light sources such as the free-electron laser to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre wakefields can accelerate witness electron bunches that are either externally injected or captured from the background plasma. Here in this work, we demonstrate optically triggered injection and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ‘plasma photocathode’ decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical density down-ramp injection and is an important step towards the generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultrahigh-brightness beams.},
doi = {10.1038/s41567-019-0610-9},
journal = {Nature Physics},
number = [11],
volume = [15],
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 12, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Laser Electron Accelerator
journal, July 1979


Plasma-Density-Gradient Injection of Low Absolute-Momentum-Spread Electron Bunches
journal, May 2008


Hot spots and dark current in advanced plasma wakefield accelerators
journal, January 2016


Ultracold Electron Bunch Generation via Plasma Photocathode Emission and Acceleration in a Beam-Driven Plasma Blowout
journal, January 2012


Linac Coherent Light Source: The first five years
journal, March 2016


Two-Color Laser-Ionization Injection
journal, March 2014


Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators
journal, June 2012

  • Brijesh, P.; Thaury, C.; Phuoc, K. T.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4725421

Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes
journal, March 2013


Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma
journal, February 1985


Plasma wakefield acceleration experiments at FACET
journal, May 2010


Holographic axilens: high resolution and long focal depth
journal, January 1991

  • Davidson, N.; Friesem, A. A.; Hasman, E.
  • Optics Letters, Vol. 16, Issue 7
  • DOI: 10.1364/OL.16.000523

Laser Injection of Ultrashort Electron Pulses into Wakefield Plasma Waves
journal, March 1996


Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime
journal, December 2014


High-efficiency acceleration of an electron beam in a plasma wakefield accelerator
journal, November 2014


Ionization-Induced Electron Trapping in Ultrarelativistic Plasma Wakes
journal, February 2007


Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams
journal, June 2017

  • Manahan, G. G.; Habib, A. F.; Scherkl, P.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15705

Monoenergetic Electronic Beam Production Using Dual Collinear Laser Pulses
journal, June 2008


VORPAL: a versatile plasma simulation code
journal, May 2004


Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses
journal, December 2006


Particle injection into the wave acceleration phase due to nonlinear wake wave breaking
journal, November 1998


Two-Pulse Ionization Injection into Quasilinear Laser Wakefields
journal, October 2013


Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator
journal, February 2007

  • Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef
  • Nature, Vol. 445, Issue 7129
  • DOI: 10.1038/nature05538

Charge and wavelength scaling of RF photoinjector designs
conference, January 1995

  • Rosenzweig, J.; Colby, E.
  • The sixth advanced accelerator concepts workshop, AIP Conference Proceedings
  • DOI: 10.1063/1.48260

The resonant multi-pulse ionization injection
journal, October 2017

  • Tomassini, Paolo; De Nicola, Sergio; Labate, Luca
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.5000696

Experimental Observation of Plasma Wake-Field Acceleration
journal, July 1988


Laser ionized preformed plasma at FACET
journal, July 2014


Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel
journal, August 2010

  • Faure, J.; Rechatin, C.; Lundh, O.
  • Physics of Plasmas, Vol. 17, Issue 8
  • DOI: 10.1063/1.3469581

Plasma Electron Trapping and Acceleration in a Plasma Wake Field Using a Density Transition
journal, February 2001


Beam Loading by Distributed Injection of Electrons in a Plasma Wakefield Accelerator
journal, January 2014


Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators
journal, May 2003

  • Bruhwiler, David L.; Dimitrov, D. A.; Cary, John R.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1566027

Optical plasma torch electron bunch generation in plasma wakefield accelerators
journal, August 2015

  • Wittig, G.; Karger, O.; Knetsch, A.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 8
  • DOI: 10.1103/PhysRevSTAB.18.081304

Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes
journal, January 2010