skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part II. Transport Model and Validation

Abstract

Multicomponent mass-transport in cation-exchange membranes involves the movement of multiple species whose motion is coupled one to another. This phenomenon mediates the performance of numerous electrochemical and water purification technologies. This work presents and validates against experiment a mathematical model for multicomponent mass transport in phase-separated cation-exchange membranes (e.g., perfluorinated sulfonic-acid ionomers). Stefan-Maxwell-Onsager theory describes concentrated-solution transport. Hydrodynamic theory provides constitutive relations for the solute/solvent, solute/membrane, and solvent/membrane friction coefficients. Classical porous-medium theories scale membrane tortuosity. Electrostatic relaxation creates friction between ions. The model uses calculated ion and solvent partitioning between the external solution and the membrane from Part I of this series and incorporates the corresponding ion speciation into the transport coefficients. The proposed transport model compares favorably to properties (e.g., membrane conductivity, transference numbers, electroosmosis, and permeability) measured in dilute and concentrated aqueous binary and ternary electrolytes. The results reveal that the concentration and type of ions in the external solution alter the solvent volume fraction and viscosity in the hydrophilic pathways of the membrane, changing macroscale ionomer conductivity, permeability, and transference numbers. This work provides a physicochemical framework to predict ion-exchange-membrane performance in multicomponent systems exhibiting coupled transport.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1598404
Alternate Identifier(s):
OSTI ID: 1619148
Grant/Contract Number:  
AC02-05CH11231; AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society (Online)
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society (Online) Journal Volume: 167 Journal Issue: 1; Journal ID: ISSN 1945-7111
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE

Citation Formats

Crothers, Andrew R., Darling, Robert M., Kusoglu, Ahmet, Radke, Clayton J., and Weber, Adam Z. Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part II. Transport Model and Validation. United States: N. p., 2020. Web. doi:10.1149/1945-7111/ab6724.
Crothers, Andrew R., Darling, Robert M., Kusoglu, Ahmet, Radke, Clayton J., & Weber, Adam Z. Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part II. Transport Model and Validation. United States. doi:10.1149/1945-7111/ab6724.
Crothers, Andrew R., Darling, Robert M., Kusoglu, Ahmet, Radke, Clayton J., and Weber, Adam Z. Wed . "Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part II. Transport Model and Validation". United States. doi:10.1149/1945-7111/ab6724.
@article{osti_1598404,
title = {Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part II. Transport Model and Validation},
author = {Crothers, Andrew R. and Darling, Robert M. and Kusoglu, Ahmet and Radke, Clayton J. and Weber, Adam Z.},
abstractNote = {Multicomponent mass-transport in cation-exchange membranes involves the movement of multiple species whose motion is coupled one to another. This phenomenon mediates the performance of numerous electrochemical and water purification technologies. This work presents and validates against experiment a mathematical model for multicomponent mass transport in phase-separated cation-exchange membranes (e.g., perfluorinated sulfonic-acid ionomers). Stefan-Maxwell-Onsager theory describes concentrated-solution transport. Hydrodynamic theory provides constitutive relations for the solute/solvent, solute/membrane, and solvent/membrane friction coefficients. Classical porous-medium theories scale membrane tortuosity. Electrostatic relaxation creates friction between ions. The model uses calculated ion and solvent partitioning between the external solution and the membrane from Part I of this series and incorporates the corresponding ion speciation into the transport coefficients. The proposed transport model compares favorably to properties (e.g., membrane conductivity, transference numbers, electroosmosis, and permeability) measured in dilute and concentrated aqueous binary and ternary electrolytes. The results reveal that the concentration and type of ions in the external solution alter the solvent volume fraction and viscosity in the hydrophilic pathways of the membrane, changing macroscale ionomer conductivity, permeability, and transference numbers. This work provides a physicochemical framework to predict ion-exchange-membrane performance in multicomponent systems exhibiting coupled transport.},
doi = {10.1149/1945-7111/ab6724},
journal = {Journal of the Electrochemical Society (Online)},
number = 1,
volume = 167,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1149/1945-7111/ab6724

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of Cerium, Cobalt and Nickel Contaminants on the Oxygen Reduction Reaction at Platinum Electrodes
journal, August 2017

  • Dumont, Joseph H.; Baker, Andrew M.; Maurya, Sandip
  • ECS Transactions, Vol. 80, Issue 8
  • DOI: 10.1149/08008.0861ecst

Transport in Proton Conductors for Fuel-Cell Applications:  Simulations, Elementary Reactions, and Phenomenology
journal, October 2004

  • Kreuer, Klaus-Dieter; Paddison, Stephen J.; Spohr, Eckhard
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020715f

Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part III. Transport in Vanadium Redox-Flow-Battery Separators
journal, January 2020

  • Crothers, Andrew R.; Darling, Robert M.; Kushner, Douglas I.
  • Journal of The Electrochemical Society, Vol. 167, Issue 1
  • DOI: 10.1149/1945-7111/ab6725

Simulation of the Direct Methanol Fuel Cell
journal, January 2002

  • Meyers, Jeremy P.; Newman, John
  • Journal of The Electrochemical Society, Vol. 149, Issue 6
  • DOI: 10.1149/1.1473189

Hydrodynamic models for diffusion in microporous membranes
journal, March 1976

  • Lightfoot, Edwin N.; Bassingthwaighte, James B.; Grabowski, Eric F.
  • Annals of Biomedical Engineering, Vol. 4, Issue 1
  • DOI: 10.1007/BF02363560

Cerium Migration during PEM Fuel Cell Accelerated Stress Testing
journal, January 2016

  • Baker, Andrew M.; Mukundan, Rangachary; Spernjak, Dusan
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.0181609jes

Irreversible thermodynamics of transport across charged membranes
journal, February 1987


Role of convection and related effects on species crossover and capacity loss in vanadium redox flow batteries
journal, September 2012


Species Uptake and Mass Transport in Membranes for Vanadium Redox Flow Batteries
journal, May 2017


A modified Maxwell-Stefan model for transport through inert membranes: the binary friction model
journal, December 1996

  • Kerkhof, Piet J. A. M.
  • The Chemical Engineering Journal and the Biochemical Engineering Journal, Vol. 64, Issue 3
  • DOI: 10.1016/S0923-0467(96)03134-X

Composition and Conductivity of Membranes Equilibrated with Solutions of Sulfuric Acid and Vanadyl Sulfate
journal, January 2013

  • Tang, Zhijiang; Svoboda, Rachel; Lawton, Jamie S.
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.083309jes

Transport of electrolytes in charged pores: Analysis using the method of spatial averaging
journal, May 1989


Proton Solvation and Transport in Realistic Proton Exchange Membrane Morphologies
journal, February 2016


Continuum transport laws for locally non-neutral concentrated electrolytes
journal, December 2013


A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane
journal, January 2012

  • Knehr, K. W.; Agar, Ertan; Dennison, C. R.
  • Journal of The Electrochemical Society, Vol. 159, Issue 9
  • DOI: 10.1149/2.017209jes

Transport in Polymer-Electrolyte Membranes
journal, January 2004

  • Weber, Adam Z.; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 2
  • DOI: 10.1149/1.1639157

Transport Property Requirements for Flow Battery Separators
journal, July 2015

  • Darling, Robert; Gallagher, Kevin; Xie, Wei
  • Journal of The Electrochemical Society, Vol. 163, Issue 1
  • DOI: 10.1149/2.0051601jes

The Influence of Electric Field on Crossover in Redox-Flow Batteries
journal, July 2015

  • Darling, Robert M.; Weber, Adam Z.; Tucker, Michael C.
  • Journal of The Electrochemical Society, Vol. 163, Issue 1
  • DOI: 10.1149/2.0031601jes

Tortuosity in Porous Media: A Critical Review
journal, January 2013

  • Ghanbarian, Behzad; Hunt, Allen G.; Ewing, Robert P.
  • Soil Science Society of America Journal, Vol. 77, Issue 5
  • DOI: 10.2136/sssaj2012.0435

New Foundations of Newman’s Theory for Solid Electrolytes: Thermodynamics and Transient Balances
journal, January 2017

  • Goyal, Priyamvada; Monroe, Charles W.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0611711jes

Ion and Water Transport Characteristics of Perfluorosulfonated Ionomer Membranes with H + and Alkali Metal Cations
journal, February 2002

  • Okada, Tatsuhiro; Satou, Hiroyuki; Okuno, Mitsuhiro
  • The Journal of Physical Chemistry B, Vol. 106, Issue 6
  • DOI: 10.1021/jp013195l

Structural and transport properties of Nafion in hydrobromic-acid solutions
journal, December 2013


Cerium Migration through Hydrogen Fuel Cells during Accelerated Stress Testing
journal, January 2014

  • Stewart, S. M.; Spernjak, D.; Borup, R.
  • ECS Electrochemistry Letters, Vol. 3, Issue 4
  • DOI: 10.1149/2.008404eel

Onsager Reciprocal Relations for Stefan−Maxwell Diffusion
journal, July 2006

  • Monroe, Charles W.; Newman, John
  • Industrial & Engineering Chemistry Research, Vol. 45, Issue 15
  • DOI: 10.1021/ie051061e

Design of an Electrochemical Cell Making Syngas  (CO + H2)  from CO2 and H2O Reduction at Room Temperature
journal, January 2008

  • Delacourt, Charles; Ridgway, Paul L.; Kerr, John B.
  • Journal of The Electrochemical Society, Vol. 155, Issue 1, p. B42-B49
  • DOI: 10.1149/1.2801871

Mass transport of electrolytes in membranes. 1. Development of mathematical transport model
journal, May 1984

  • Pintauro, Peter N.; Bennion, Douglas N.
  • Industrial & Engineering Chemistry Fundamentals, Vol. 23, Issue 2
  • DOI: 10.1021/i100014a016

Soil properties influencing apparent electrical conductivity: a review
journal, March 2005


Mass transport of electrolytes in membranes. 2. Determination of sodium chloride equilibrium and transport parameters for Nafion
journal, May 1984

  • Pintauro, Peter N.; Bennion, Douglas N.
  • Industrial & Engineering Chemistry Fundamentals, Vol. 23, Issue 2
  • DOI: 10.1021/i100014a017

Ion and Water Transport Characteristics in Membranes for Polymer Electrolyte Fuel Cells Containing H[sup +] and Ca[sup 2+] Cations
journal, January 1997

  • Okada, Tatsuhiro
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837890

Steady-state diffusion of water through soft-contact-lens materials
journal, October 2005


Ion Effects on Vanadium Transport in Nafion Membranes for Vanadium Redox Flow Batteries
journal, January 2017

  • Lawton, Jamie S.; Jones, Amanda M.; Tang, Zhijiang
  • Journal of The Electrochemical Society, Vol. 164, Issue 13
  • DOI: 10.1149/2.1791712jes

New Insights into Perfluorinated Sulfonic-Acid Ionomers
journal, January 2017


Concentrated Solution Model of Transport in All Vanadium Redox Flow Battery Membrane Separator
journal, September 2014

  • Ashraf Gandomi, Y.; Zawodzinski, T. A.; Mench, M. M.
  • ECS Transactions, Vol. 61, Issue 13
  • DOI: 10.1149/06113.0023ecst

Theory of Ion and Water Transport in Reverse-Osmosis Membranes
journal, February 2018


Electrochemical Synthesis of Ammonia: A Low Pressure, Low Temperature Approach
journal, January 2015

  • Renner, J. N.; Greenlee, L. F.; Ayres, K. E.
  • Interface magazine, Vol. 24, Issue 2
  • DOI: 10.1149/2.F04152if

Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review
journal, June 2016

  • Skyllas-Kazacos, Maria; Cao, Liuyue; Kazacos, Michael
  • ChemSusChem, Vol. 9, Issue 13
  • DOI: 10.1002/cssc.201600102

Mathematical Modeling of a Cation-Exchange Membrane Containing Two Cations
journal, January 2008

  • Delacourt, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 155, Issue 11, p. B1210-B1217
  • DOI: 10.1149/1.2977960

The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes
journal, February 1995


Multicomponent Space-Charge Transport Model for Ion-Exchange Membranes with Variable Pore Properties
journal, June 2004

  • Yang, Y.; Pintauro, P. N.
  • Industrial & Engineering Chemistry Research, Vol. 43, Issue 12
  • DOI: 10.1021/ie030558q

Mathematical Modelling of Cation Contamination in a Proton-exchange Membrane
journal, December 2008


The Effect of Impurity Cations on the Transport Characteristics of Perfluorosulfonated Ionomer Membranes
journal, April 1999

  • Okada, Tatsuhiro; Ayato, Yuusuke; Yuasa, Makoto
  • The Journal of Physical Chemistry B, Vol. 103, Issue 17
  • DOI: 10.1021/jp983762d

Structure-Transport Relationship of Perfluorosulfonic-Acid Membranes in Different Cationic Forms
journal, December 2016


Towards membrane-electrode assembly systems for CO 2 reduction: a modeling study
journal, January 2019

  • Weng, Lien-Chun; Bell, Alexis T.; Weber, Adam Z.
  • Energy & Environmental Science, Vol. 12, Issue 6
  • DOI: 10.1039/C9EE00909D

Multicomponent Diffusion
journal, July 1999

  • Curtiss, C. F.; Bird, R. Byron
  • Industrial & Engineering Chemistry Research, Vol. 38, Issue 7
  • DOI: 10.1021/ie9901123

Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries
journal, November 2016


A Molecular Dynamics Study of the Effects of V 2+ and V 3+ on the Local Structure of Hydrated Nafion
journal, June 2015

  • Cui, Shengting; Paddison, Stephen J.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 23
  • DOI: 10.1021/acs.jpcc.5b02876

Membrane transport characteristics of binary cation systems with Li+ and alkali metal cations in perfluorosulfonated ionomer
journal, May 2005


Fundamental water and salt transport properties of polymeric materials
journal, January 2014


Ce Cation Migration and Diffusivity in Perfluorosulfonic Acid Fuel Cell Membranes
journal, July 2019

  • Baker, Andrew M.; Komini Babu, Siddharth; Chintam, Kavitha
  • ECS Transactions, Vol. 92, Issue 8
  • DOI: 10.1149/09208.0429ecst

The Maxwell-Stefan approach to mass transfer
journal, March 1997


Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions
journal, January 1998

  • Okada, Tatsuhiro; Møller-Holst, Steffen; Gorseth, Oddvar
  • Journal of Electroanalytical Chemistry, Vol. 442, Issue 1-2
  • DOI: 10.1016/S0022-0728(97)00499-3

Selectivity of ion exchange membranes: A review
journal, June 2018


Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions
journal, November 2009

  • Bazant, Martin Z.; Kilic, Mustafa Sabri; Storey, Brian D.
  • Advances in Colloid and Interface Science, Vol. 152, Issue 1-2
  • DOI: 10.1016/j.cis.2009.10.001

Transport of simple electrolyte solutions through ion-exchange membranes—the capillary model
journal, August 2002


Exploring the Maxwell-Stefan description of ion exchange
journal, April 1995

  • Wesselingh, J. A.; Vonk, P.; Kraaijeveld, G.
  • The Chemical Engineering Journal and the Biochemical Engineering Journal, Vol. 57, Issue 2
  • DOI: 10.1016/0923-0467(94)02932-6

Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes
journal, July 2016


Insights into membrane-separated organic electrosynthesis: the case of adiponitrile electrochemical production
journal, January 2020

  • Blanco, Daniela E.; Prasad, Purnima A.; Dunningan, Kaylee
  • Reaction Chemistry & Engineering, Vol. 5, Issue 1
  • DOI: 10.1039/C9RE00389D

Modeling of vanadium ion diffusion across the ion exchange membrane in the vanadium redox battery
journal, May 2012