skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity


Structure characterization and classification is frequently based on local environment information of all or selected atomic sites in the crystal structure.

ORCiD logo [1];  [1]
  1. Energy Technology Area, Lawrence Berkeley National Laboratory, Berkeley, USA
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Resource Type:
Published Article
Journal Name:
RSC Advances
Additional Journal Information:
Journal Name: RSC Advances Journal Volume: 10 Journal Issue: 10; Journal ID: ISSN 2046-2069
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom

Citation Formats

Zimmermann, Nils E. R., and Jain, Anubhav. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. United Kingdom: N. p., 2020. Web. doi:10.1039/C9RA07755C.
Zimmermann, Nils E. R., & Jain, Anubhav. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. United Kingdom. doi:10.1039/C9RA07755C.
Zimmermann, Nils E. R., and Jain, Anubhav. Fri . "Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity". United Kingdom. doi:10.1039/C9RA07755C.
title = {Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity},
author = {Zimmermann, Nils E. R. and Jain, Anubhav},
abstractNote = {Structure characterization and classification is frequently based on local environment information of all or selected atomic sites in the crystal structure.},
doi = {10.1039/C9RA07755C},
journal = {RSC Advances},
number = 10,
volume = 10,
place = {United Kingdom},
year = {2020},
month = {2}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/C9RA07755C

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information
journal, October 1979

  • Allen, F. H.; Bellard, S.; Brice, M. D.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 35, Issue 10
  • DOI: 10.1107/S0567740879009249

Nucleation of NaCl from Aqueous Solution: Critical Sizes, Ion-Attachment Kinetics, and Rates
journal, October 2015

  • Zimmermann, Nils E. R.; Vorselaars, Bart; Quigley, David
  • Journal of the American Chemical Society, Vol. 137, Issue 41
  • DOI: 10.1021/jacs.5b08098

New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships
journal, April 2016

  • Jain, Anubhav; Hautier, Geoffroy; Ong, Shyue Ping
  • Journal of Materials Research, Vol. 31, Issue 8
  • DOI: 10.1557/jmr.2016.80

The Principles Determining the Structure of Complex Ionic Crystals
journal, April 1929

  • Pauling, Linus
  • Journal of the American Chemical Society, Vol. 51, Issue 4
  • DOI: 10.1021/ja01379a006

Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations
journal, July 2017

Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures
journal, February 2017

NOMAD: The FAIR concept for big data-driven materials science
journal, September 2018

The AFLOW Library of Crystallographic Prototypes: Part 1
journal, August 2017

Effective coordination numbers (ECoN) and mean Active fictive ionic radii (MEFIR) [1,2] *
journal, January 1979

Robocrystallographer: automated crystal structure text descriptions and analysis
journal, July 2019

A fingerprint based metric for measuring similarities of crystalline structures
journal, January 2016

  • Zhu, Li; Amsler, Maximilian; Fuhrer, Tobias
  • The Journal of Chemical Physics, Vol. 144, Issue 3
  • DOI: 10.1063/1.4940026

Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials
journal, March 2017

History and Utility of Zeolite Framework-Type Discovery from a Data-Science Perspective
journal, May 2016

CRYSTMET: a database of the structures and powder patterns of metals and intermetallics
journal, May 2002

  • White, Peter S.; Rodgers, John R.; Le Page, Yvon
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102002902

New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
journal, May 2002

  • Belsky, Alec; Hellenbrandt, Mariette; Karen, Vicky Lynn
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102006948

Ab initiomolecular dynamics for liquid metals
journal, January 1993

Transferable Machine-Learning Model of the Electron Density
journal, December 2018

Uncovering structure-property relationships of materials by subgroup discovery
journal, January 2017

  • Goldsmith, Bryan R.; Boley, Mario; Vreeken, Jilles
  • New Journal of Physics, Vol. 19, Issue 1
  • DOI: 10.1088/1367-2630/aa57c2

Solving the electronic structure problem with machine learning
journal, February 2019

  • Chandrasekaran, Anand; Kamal, Deepak; Batra, Rohit
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0162-7

The Pauling File, Binaries Edition
journal, March 2004

Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning
journal, October 2017

A Note on the Generation of Random Normal Deviates
journal, June 1958

  • Box, G. E. P.; Muller, Mervin E.
  • The Annals of Mathematical Statistics, Vol. 29, Issue 2
  • DOI: 10.1214/aoms/1177706645

A New Method of X-Ray Crystal Analysis
journal, December 1917

The AFLOW Library of Crystallographic Prototypes: Part 2
journal, April 2019

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012

Representation of configuration in coordination polyhedra and the extension of current methodology to coordination numbers greater than six (IUPAC Technical Report)
journal, January 2007

  • Hartshorn, Richard M.; Hey-Hawkins, Evamarie; Kalio, René
  • Pure and Applied Chemistry, Vol. 79, Issue 10
  • DOI: 10.1351/pac200779101779

A universal strategy for the creation of machine learning-based atomistic force fields
journal, September 2017

Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types
journal, January 1990

  • Lima-de-Faria, J.; Hellner, E.; Liebau, F.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 46, Issue 1
  • DOI: 10.1107/S0108767389008834

Ellipsoidal analysis of coordination polyhedra
journal, February 2017

  • Cumby, James; Attfield, J. Paul
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14235

The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid
journal, August 2011

  • Hachmann, Johannes; Olivares-Amaya, Roberto; Atahan-Evrenk, Sule
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 17
  • DOI: 10.1021/jz200866s

Statistical Analysis of Coordination Environments in Oxides
journal, September 2017

General Atomic Neighborhood Fingerprint for Machine Learning-Based Methods
journal, June 2019

  • Batra, Rohit; Tran, Huan Doan; Kim, Chiho
  • The Journal of Physical Chemistry C, Vol. 123, Issue 25
  • DOI: 10.1021/acs.jpcc.9b03925

Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials
journal, January 2017

  • Sendek, Austin D.; Yang, Qian; Cubuk, Ekin D.
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02697D

Matminer: An open source toolkit for materials data mining
journal, September 2018

A new look at the statistical model identification
journal, December 1974

Lead-free germanium iodide perovskite materials for photovoltaic applications
journal, January 2015

  • Krishnamoorthy, Thirumal; Ding, Hong; Yan, Chen
  • Journal of Materials Chemistry A, Vol. 3, Issue 47
  • DOI: 10.1039/C5TA05741H

Multi-fidelity machine learning models for accurate bandgap predictions of solids
journal, March 2017

The reusable holdout: Preserving validity in adaptive data analysis
journal, August 2015

The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities
journal, January 1989

  • Inman, Henry F.; Bradley, Edwin L.
  • Communications in Statistics - Theory and Methods, Vol. 18, Issue 10
  • DOI: 10.1080/03610928908830127

Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015

Competing nucleation pathways in a mixture of oppositely charged colloids: Out-of-equilibrium nucleation revisited
journal, December 2009

  • Peters, Baron
  • The Journal of Chemical Physics, Vol. 131, Issue 24
  • DOI: 10.1063/1.3271024

Hierarchical visualization of materials space with graph convolutional neural networks
journal, November 2018

  • Xie, Tian; Grossman, Jeffrey C.
  • The Journal of Chemical Physics, Vol. 149, Issue 17
  • DOI: 10.1063/1.5047803

Convex Polyhedra with Regular Faces
journal, January 1966

Capturing chemical intuition in synthesis of metal-organic frameworks
journal, February 2019

  • Moosavi, Seyed Mohamad; Chidambaram, Arunraj; Talirz, Leopold
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-08483-9

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Machine Learning Force Fields: Construction, Validation, and Outlook
journal, December 2016

Statistical inference and adaptive design for materials discovery
journal, June 2017

  • Lookman, Turab; Balachandran, Prasanna V.; Xue, Dezhen
  • Current Opinion in Solid State and Materials Science, Vol. 21, Issue 3
  • DOI: 10.1016/j.cossms.2016.10.002

Electrostatic Estimation of Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models
journal, January 2018

  • Zimmermann, Nils E. R.; Hannah, Daniel C.; Rong, Ziqin
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 3
  • DOI: 10.1021/acs.jpclett.7b03199

The NumPy Array: A Structure for Efficient Numerical Computation
journal, March 2011

  • van der Walt, Stéfan; Colbert, S. Chris; Varoquaux, Gaël
  • Computing in Science & Engineering, Vol. 13, Issue 2
  • DOI: 10.1109/MCSE.2011.37

Theory-Guided Machine Learning in Materials Science
journal, June 2016

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013

Estimating the Dimension of a Model
journal, March 1978

Operation of an international data center: Canadian Scientific Numeric Database Service
journal, January 1993

  • Wood, Gordon H.; Rodgers, John R.; Gough, S. Roger
  • Journal of Chemical Information and Modeling, Vol. 33, Issue 1
  • DOI: 10.1021/ci00011a006

Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites.
journal, January 1908

  • Voronoi, Georges
  • Journal für die reine und angewandte Mathematik (Crelles Journal), Vol. 1908, Issue 133
  • DOI: 10.1515/crll.1908.133.97

Atom sizes and bond lengths in molecules and crystals
journal, April 1991

  • O'Keefe, Michael; Brese, N. E.
  • Journal of the American Chemical Society, Vol. 113, Issue 9
  • DOI: 10.1021/ja00009a002

Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models
journal, September 2017

The inorganic crystal structure data base
journal, May 1983

  • Bergerhoff, G.; Hundt, R.; Sievers, R.
  • Journal of Chemical Information and Modeling, Vol. 23, Issue 2
  • DOI: 10.1021/ci00038a003

High-throughput prediction of the ground-state collinear magnetic order of inorganic materials using Density Functional Theory
journal, June 2019

  • Horton, Matthew Kristofer; Montoya, Joseph Harold; Liu, Miao
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0199-7

Special issue “Deciphering the complexity of mineral structures”
journal, March 2018

  • Bindi, Luca; Plášil, Jakub
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 233, Issue 3-4
  • DOI: 10.1515/zkri-2018-9001

A definition of coordination and its relevance in the structure types AlB 2 and NiAs
journal, January 1977

Crystallography Open Database – an open-access collection of crystal structures
journal, May 2009

  • Gražulis, Saulius; Chateigner, Daniel; Downs, Robert T.
  • Journal of Applied Crystallography, Vol. 42, Issue 4
  • DOI: 10.1107/S0021889809016690

Continuous Symmetry Measures. 5. The Classical Polyhedra
journal, October 1998

  • Pinsky, Mark; Avnir, David
  • Inorganic Chemistry, Vol. 37, Issue 21
  • DOI: 10.1021/ic9804925

Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres
journal, October 1984

  • Frenkel, Daan; Ladd, Anthony J. C.
  • The Journal of Chemical Physics, Vol. 81, Issue 7
  • DOI: 10.1063/1.448024

Polyhedra in Physics, Chemistry and Geometry
journal, September 2003

Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

Solubility of NaCl in water by molecular simulation revisited
journal, June 2012

  • Aragones, J. L.; Sanz, E.; Vega, C.
  • The Journal of Chemical Physics, Vol. 136, Issue 24
  • DOI: 10.1063/1.4728163

Insightful classification of crystal structures using deep learning
journal, July 2018

From properties to materials: An efficient and simple approach
journal, December 2017

  • Huwig, Kai; Fan, Chencheng; Springborg, Michael
  • The Journal of Chemical Physics, Vol. 147, Issue 23
  • DOI: 10.1063/1.5009548

High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory
journal, July 2017

Inverse design of porous materials using artificial neural networks
journal, January 2020

Zur Kenntnis des asymmetrischen Kobaltatoms. V
journal, January 1912

Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries
journal, May 2016

Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization
journal, November 2017

  • Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav
  • Frontiers in Materials, Vol. 4
  • DOI: 10.3389/fmats.2017.00034

Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction
journal, February 2017

  • Segler, Marwin H. S.; Waller, Mark P.
  • Chemistry - A European Journal, Vol. 23, Issue 25
  • DOI: 10.1002/chem.201605499

Data‐Driven Materials Science: Status, Challenges, and Perspectives
journal, September 2019

  • Himanen, Lauri; Geurts, Amber; Foster, Adam Stuart
  • Advanced Science, Vol. 6, Issue 21
  • DOI: 10.1002/advs.201900808

A proposed rigorous definition of coordination number
journal, September 1979

  • O'Keeffe, M.
  • Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, Vol. 35, Issue 5
  • DOI: 10.1107/S0567739479001765

Bond-orientational order in liquids and glasses
journal, July 1983

  • Steinhardt, Paul J.; Nelson, David R.; Ronchetti, Marco
  • Physical Review B, Vol. 28, Issue 2
  • DOI: 10.1103/PhysRevB.28.784

Criteria for Zeolite Frameworks Realizable for Target Synthesis
journal, January 2013

  • Li, Yi; Yu, Jihong; Xu, Ruren
  • Angewandte Chemie International Edition, Vol. 52, Issue 6
  • DOI: 10.1002/anie.201206340

High-throughput assessment of hypothetical zeolite materials for their synthesizeability and industrial deployability
journal, July 2019

  • Salcedo Perez, Jose Luis; Haranczyk, Maciej; Zimmermann, Nils Edvin Richard
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 234, Issue 7-8
  • DOI: 10.1515/zkri-2018-2155

Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Physically informed artificial neural networks for atomistic modeling of materials
journal, May 2019

Bypassing the Kohn-Sham equations with machine learning
journal, October 2017

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Inhomogeneous Electron Gas
journal, November 1964

Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter
journal, January 2013

  • Mickel, Walter; Kapfer, Sebastian C.; Schröder-Turk, Gerd E.
  • The Journal of Chemical Physics, Vol. 138, Issue 4
  • DOI: 10.1063/1.4774084

High-throughput search of ternary chalcogenides for p-type transparent electrodes
journal, March 2017

  • Shi, Jingming; Cerqueira, Tiago F. T.; Cui, Wenwen
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep43179

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013

High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds
journal, October 2016

AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
journal, June 2012

Virtual screening of inorganic materials synthesis parameters with deep learning
journal, December 2017

Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions
journal, July 2018

  • Kim, Chiho; Chandrasekaran, Anand; Huan, Tran Doan
  • The Journal of Physical Chemistry C, Vol. 122, Issue 31
  • DOI: 10.1021/acs.jpcc.8b02913

A general-purpose machine learning framework for predicting properties of inorganic materials
journal, August 2016

Applications of local crystal structure measures in experiment and simulation
journal, February 2006