DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility

Abstract

The Bigfoot approach to indirect-drive inertial confinement fusion has been developed as a compromise trading high convergence and areal densities for high implosion velocities, large adiabats, and hydrodynamic stability. Shape control and predictability are maintained by using relatively short laser pulses and merging the shocks within the deuterium-tritium-ice layer. These design choices ultimately limit the theoretically achievable performance, and one strategy to increase the 1D performance is to reduce the shell adiabat by extending the pulse shape. However, this can result in the loss of low-mode symmetry control, as the hohlraum “bubble,” the high-Z material launched by the outer-cone beams during the early part of the laser pulse, has more time to expand and will eventually intercept inner-cone beams preventing them from reaching the hohlraum waist, thus losing an equatorial capsule drive. Experiments were performed to study the shape control and predictability with extended pulse shapes in Bigfoot implosions, reducing the adiabat from nominally α~4 to α~3 and otherwise very similar experimental parameters. Lastly, the implosion shape was measured both in-flight and at stagnation, with near-round implosions and low levels of P2 asymmetry throughout, indicating a maintained symmetry control with extended pulse shapes.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1597590
Alternate Identifier(s):
OSTI ID: 1574545
Report Number(s):
LLNL-JRNL-782126
Journal ID: ISSN 1070-664X; 976646; TRN: US2103144
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 11; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Physics; Plasma confinement; Nuclear fuel; X-ray imager; Alpha particles; Time resolved imaging; Fluid mechanics; Radiography; X-ray camera; Hard X-rays

Citation Formats

Hohenberger, M., Casey, D. T., Thomas, C. A., Landen, O. L., Baker, K. L., Benedetti, L. R., Callahan, D. A., Hurricane, O. A., Izumi, N., Khan, S. F., Ma, T., Mariscal, D. A., Nagel, S. R., Pak, A., and Spears, B. K. Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility. United States: N. p., 2019. Web. doi:10.1063/1.5121435.
Hohenberger, M., Casey, D. T., Thomas, C. A., Landen, O. L., Baker, K. L., Benedetti, L. R., Callahan, D. A., Hurricane, O. A., Izumi, N., Khan, S. F., Ma, T., Mariscal, D. A., Nagel, S. R., Pak, A., & Spears, B. K. Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility. United States. https://doi.org/10.1063/1.5121435
Hohenberger, M., Casey, D. T., Thomas, C. A., Landen, O. L., Baker, K. L., Benedetti, L. R., Callahan, D. A., Hurricane, O. A., Izumi, N., Khan, S. F., Ma, T., Mariscal, D. A., Nagel, S. R., Pak, A., and Spears, B. K. Tue . "Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility". United States. https://doi.org/10.1063/1.5121435. https://www.osti.gov/servlets/purl/1597590.
@article{osti_1597590,
title = {Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility},
author = {Hohenberger, M. and Casey, D. T. and Thomas, C. A. and Landen, O. L. and Baker, K. L. and Benedetti, L. R. and Callahan, D. A. and Hurricane, O. A. and Izumi, N. and Khan, S. F. and Ma, T. and Mariscal, D. A. and Nagel, S. R. and Pak, A. and Spears, B. K.},
abstractNote = {The Bigfoot approach to indirect-drive inertial confinement fusion has been developed as a compromise trading high convergence and areal densities for high implosion velocities, large adiabats, and hydrodynamic stability. Shape control and predictability are maintained by using relatively short laser pulses and merging the shocks within the deuterium-tritium-ice layer. These design choices ultimately limit the theoretically achievable performance, and one strategy to increase the 1D performance is to reduce the shell adiabat by extending the pulse shape. However, this can result in the loss of low-mode symmetry control, as the hohlraum “bubble,” the high-Z material launched by the outer-cone beams during the early part of the laser pulse, has more time to expand and will eventually intercept inner-cone beams preventing them from reaching the hohlraum waist, thus losing an equatorial capsule drive. Experiments were performed to study the shape control and predictability with extended pulse shapes in Bigfoot implosions, reducing the adiabat from nominally α~4 to α~3 and otherwise very similar experimental parameters. Lastly, the implosion shape was measured both in-flight and at stagnation, with near-round implosions and low levels of P2 asymmetry throughout, indicating a maintained symmetry control with extended pulse shapes.},
doi = {10.1063/1.5121435},
journal = {Physics of Plasmas},
number = 11,
volume = 26,
place = {United States},
year = {Tue Nov 19 00:00:00 EST 2019},
month = {Tue Nov 19 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser
journal, May 2018

  • Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5020057

The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling
journal, May 2018

  • Casey, D. T.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5019741

The influence of hohlraum dynamics on implosion symmetry in indirect drive inertial confinement fusion experiments
journal, August 2018

  • Ralph, J. E.; Landen, O.; Divol, L.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5023008

First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility
journal, January 2018

  • Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5010922

Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets
journal, December 2017


High-density carbon ablator experiments on the National Ignition Facility
journal, May 2014

  • MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876611

Direct Measurement of Energetic Electrons Coupling to an Imploding Low-Adiabat Inertial Confinement Fusion Capsule
journal, March 2012


Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums
journal, February 2016


Precision Shock Tuning on the National Ignition Facility
journal, May 2012


Effect of the mounting membrane on shape in inertial confinement fusion implosions
journal, February 2015

  • Nagel, S. R.; Haan, S. W.; Rygg, J. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907179

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

The near vacuum hohlraum campaign at the NIF: A new approach
journal, May 2016

  • Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950843

Tuning the Implosion Symmetry of ICF Targets via Controlled Crossed-Beam Energy Transfer
journal, January 2009


2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


The National Ignition Facility
conference, May 2004

  • Miller, George H.
  • Lasers and Applications in Science and Engineering, SPIE Proceedings
  • DOI: 10.1117/12.538462

Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)
journal, October 2010

  • Kyrala, G. A.; Dixit, S.; Glenzer, S.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3481028

The National Ignition Facility neutron time-of-flight system and its initial performance (invited)
journal, October 2010

  • Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3492351

The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility
journal, May 2017

  • Hall, G. N.; Jones, O. S.; Strozzi, D. J.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983142

Measuring x-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF)
conference, October 2012

  • Khan, S. F.; Bell, P. M.; Bradley, D. K.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.930032

Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators
journal, March 2018

  • Clark, D. S.; Kritcher, A. L.; Yi, S. A.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5016874

Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity
journal, May 2017

  • Divol, L.; Pak, A.; Berzak Hopkins, L. F.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982215

Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility
journal, January 2019

  • Berger, R. L.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5079234

Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)
journal, November 2014

  • Hohenberger, M.; Albert, F.; Palmer, N. E.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4890537

NIF Ignition Campaign Target Performance and Requirements: Status May 2012
journal, March 2013

  • Haan, S. W.; Atherton, J.; Clark, D. S.
  • Fusion Science and Technology, Vol. 63, Issue 2
  • DOI: 10.13182/fst20-31

The role of hot spot mix in the low-foot and high-foot implosions on the NIF
journal, May 2017

  • Ma, T.; Patel, P. K.; Izumi, N.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983625

NIF Ignition Campaign Target Performance and Requirements: Status May 2012
journal, April 2013

  • Haan, S. W.; Atherton, J.; Clark, D. S.
  • Fusion Science and Technology, Vol. 63, Issue 2
  • DOI: 10.13182/FST13-TFM20-31

A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D 3 He and DT implosions at the NIF
journal, October 2012

  • Rinderknecht, H. G.; Johnson, M. Gatu; Zylstra, A. B.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4731000

Soft x-ray images of the laser entrance hole of ignition hohlraums
journal, October 2012

  • Schneider, M. B.; Meezan, N. B.; Alvarez, S. S.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4732850

Approaching a burning plasma on the NIF
journal, May 2019

  • Hurricane, O. A.; Springer, P. T.; Patel, P. K.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5087256

Instability growth seeded by oxygen in CH shells on the National Ignition Facility
journal, March 2015

  • Haan, S. W.; Huang, H.; Johnson, M. A.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4916300

Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


Description of the NIF Laser
journal, February 2016

  • Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.
  • Fusion Science and Technology, Vol. 69, Issue 1
  • DOI: 10.13182/FST15-144

VISRAD—A 3-D view factor code and design tool for high-energy density physics experiments
journal, September 2003


A simple time-dependent analytic model of the P2 asymmetry in cylindrical hohlraums
journal, May 1999

  • Landen, O. L.; Amendt, P. A.; Suter, L. J.
  • Physics of Plasmas, Vol. 6, Issue 5
  • DOI: 10.1063/1.873465

The Physics of Inertial Fusion
book, January 2004


eHXI: a permanently installed, hard x-ray imager for the National Ignition Facility
journal, June 2016


Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Backscatter measurements for NIF ignition targets (invited)
journal, October 2010

  • Moody, J. D.; Datte, P.; Krauter, K.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491035

Diamond spheres for inertial confinement fusion
journal, September 2009


The National Ignition Facility
journal, December 2004


Symmetry control in subscale near-vacuum hohlraums
journal, May 2016

  • Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950825

Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities
journal, May 2005

  • Haan, S. W.; Herrmann, M. C.; Dittrich, T. R.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1885003

High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility
journal, September 2018


Inertially confined fusion plasmas dominated by alpha-particle self-heating
journal, April 2016

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature Physics, Vol. 12, Issue 8
  • DOI: 10.1038/nphys3720

Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant
journal, August 2018

  • Berzak Hopkins, L.; Divol, L.; Weber, C.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5033459

Indirect drive ignition at the National Ignition Facility
journal, October 2016


Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility
journal, May 2017

  • Pak, A.; Divol, L.; Kritcher, A. L.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4979192

X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube
journal, March 2017