skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on February 4, 2021

Title: Machine learning to predict biomass sorghum yields under future climate scenarios

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4]
  1. Biosciences AreaLawrence Berkeley National Laboratory Berkeley California, Life‐Cycle, Economics and Agronomy DivisionJoint BioEnergy Institute Emeryville California
  2. Biosciences AreaLawrence Berkeley National Laboratory Berkeley California, Life‐Cycle, Economics and Agronomy DivisionJoint BioEnergy Institute Emeryville California, Department of Aerospace EngineeringHuazhong University of Science and Technology Wuhan China
  3. Biosciences AreaLawrence Berkeley National Laboratory Berkeley California, Joint BioEnergy Institute Emeryville California, Environmental Science DivisionArgonne National Laboratory Argonne Illinois
  4. Biosciences AreaLawrence Berkeley National Laboratory Berkeley California, Joint BioEnergy Institute Emeryville California, Energy Technologies AreaLawrence Berkeley National Laboratory Berkeley California, Energy &, Biosciences Institute, University of California Berkeley California
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1597542
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Biofuels, Bioproducts & Biorefining
Additional Journal Information:
Journal Name: Biofuels, Bioproducts & Biorefining; Journal ID: ISSN 1932-104X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Huntington, Tyler, Cui, Xinguang, Mishra, Umakant, and Scown, Corinne D. Machine learning to predict biomass sorghum yields under future climate scenarios. United Kingdom: N. p., 2020. Web. doi:10.1002/bbb.2087.
Huntington, Tyler, Cui, Xinguang, Mishra, Umakant, & Scown, Corinne D. Machine learning to predict biomass sorghum yields under future climate scenarios. United Kingdom. doi:10.1002/bbb.2087.
Huntington, Tyler, Cui, Xinguang, Mishra, Umakant, and Scown, Corinne D. Wed . "Machine learning to predict biomass sorghum yields under future climate scenarios". United Kingdom. doi:10.1002/bbb.2087.
@article{osti_1597542,
title = {Machine learning to predict biomass sorghum yields under future climate scenarios},
author = {Huntington, Tyler and Cui, Xinguang and Mishra, Umakant and Scown, Corinne D.},
abstractNote = {},
doi = {10.1002/bbb.2087},
journal = {Biofuels, Bioproducts & Biorefining},
number = ,
volume = ,
place = {United Kingdom},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on February 4, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Effects of climate change on global food production under SRES emissions and socio-economic scenarios
journal, April 2004


Comparison of Models for Describing; Corn Yield Response to Nitrogen Fertilizer
journal, January 1990


EnviroAtlas: A new geospatial tool to foster ecosystem services science and resource management
journal, August 2015


Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions
journal, November 2013

  • Heslot, Nicolas; Akdemir, Deniz; Sorrells, Mark E.
  • Theoretical and Applied Genetics, Vol. 127, Issue 2
  • DOI: 10.1007/s00122-013-2231-5

Comparing estimates of climate change impacts from process-based and statistical crop models
journal, January 2017


High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm
journal, August 2012

  • Mutanga, Onisimo; Adam, Elhadi; Cho, Moses Azong
  • International Journal of Applied Earth Observation and Geoinformation, Vol. 18
  • DOI: 10.1016/j.jag.2012.03.012

Climate and Management Contributions to Recent Trends in U.S. Agricultural Yields
journal, February 2003


Nonlinear heat effects on African maize as evidenced by historical yield trials
journal, March 2011

  • Lobell, David B.; Bänziger, Marianne; Magorokosho, Cosmos
  • Nature Climate Change, Vol. 1, Issue 1
  • DOI: 10.1038/nclimate1043

Breeding Technologies to Increase Crop Production in a Changing World
journal, February 2010


Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change
journal, August 2009

  • Schlenker, Wolfram; Roberts, Michael J.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 37
  • DOI: 10.1073/pnas.0906865106

Take a Closer Look: Biofuels Can Support Environmental, Economic and Social Goals
journal, June 2014

  • Dale, Bruce E.; Anderson, James E.; Brown, Robert C.
  • Environmental Science & Technology, Vol. 48, Issue 13
  • DOI: 10.1021/es5025433

The U.S. drought of 2012
journal, December 2015


2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy
report, July 2016

  • Langholtz, M. H.; Stokes, B. J.; Eaton, L. M.
  • DOE/EE-1440
  • DOI: 10.2172/1271651

Global scale climate–crop yield relationships and the impacts of recent warming
journal, March 2007


Climate variation explains a third of global crop yield variability
journal, January 2015

  • Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6989

Annual Irrigation Dynamics in the U.S. Northern High Plains Derived from Landsat Satellite Data: Satellite-Derived Irrigation Dynamics
journal, September 2017

  • Deines, Jillian M.; Kendall, Anthony D.; Hyndman, David W.
  • Geophysical Research Letters, Vol. 44, Issue 18
  • DOI: 10.1002/2017GL074071

Strategies for near-term scale-up of cellulosic biofuel production using sorghum and crop residues in the US
journal, November 2018

  • Cui, Xinguang; Kavvada, Olga; Huntington, Tyler
  • Environmental Research Letters, Vol. 13, Issue 12
  • DOI: 10.1088/1748-9326/aae6e3

Random Forests for Global and Regional Crop Yield Predictions
journal, June 2016


Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections: CMIP5 PROJECTIONS OF EXTREMES INDICES
journal, March 2013

  • Sillmann, J.; Kharin, V. V.; Zwiers, F. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 6
  • DOI: 10.1002/jgrd.50188

Global crop yield response to extreme heat stress under multiple climate change futures
journal, March 2014


AquaCrop - The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description
journal, May 2009