skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes

Abstract

Silicon demonstrates great potential as a next-generation lithium ion battery anode because of high capacity and elemental abundance. However, the issue of low initial Coulombic efficiency needs to be addressed to enable large-scale applications. There are mainly two mechanisms for this lithium loss in the first cycle: the formation of the solid electrolyte interphase and lithium trapping in the electrode. The former has been heavily investigated while the latter has been largely neglected. Here, through both theoretical calculation and experimental study, we demonstrate that by introducing Ge substitution in Si with fine compositional control, the energy barrier of lithium diffusion will be greatly reduced because of the lattice expansion. This effect of isovalent isomorphism significantly reduces the Li trapping by ~70% and improves the initial Coulombic efficiency to over 90%. We expect that various systems of battery materials can benefit from this mechanism for fine-tuning their electrochemical behaviors.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1]
  1. Nanjing Univ. (China). National Lab. of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Lab. of Artificial Functional Materials
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1597487
Grant/Contract Number:  
[AC02-76SF00515]
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
[ Journal Volume: 5; Journal Issue: 11]; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Zhu, Bin, Liu, Guoliang, Lv, Guangxin, Mu, Yu, Zhao, Yunlei, Wang, Yuxi, Li, Xiuqiang, Yao, Pengcheng, Deng, Yu, Cui, Yi, and Zhu, Jia. Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes. United States: N. p., 2019. Web. doi:10.1126/sciadv.aax0651.
Zhu, Bin, Liu, Guoliang, Lv, Guangxin, Mu, Yu, Zhao, Yunlei, Wang, Yuxi, Li, Xiuqiang, Yao, Pengcheng, Deng, Yu, Cui, Yi, & Zhu, Jia. Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes. United States. doi:10.1126/sciadv.aax0651.
Zhu, Bin, Liu, Guoliang, Lv, Guangxin, Mu, Yu, Zhao, Yunlei, Wang, Yuxi, Li, Xiuqiang, Yao, Pengcheng, Deng, Yu, Cui, Yi, and Zhu, Jia. Fri . "Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes". United States. doi:10.1126/sciadv.aax0651. https://www.osti.gov/servlets/purl/1597487.
@article{osti_1597487,
title = {Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes},
author = {Zhu, Bin and Liu, Guoliang and Lv, Guangxin and Mu, Yu and Zhao, Yunlei and Wang, Yuxi and Li, Xiuqiang and Yao, Pengcheng and Deng, Yu and Cui, Yi and Zhu, Jia},
abstractNote = {Silicon demonstrates great potential as a next-generation lithium ion battery anode because of high capacity and elemental abundance. However, the issue of low initial Coulombic efficiency needs to be addressed to enable large-scale applications. There are mainly two mechanisms for this lithium loss in the first cycle: the formation of the solid electrolyte interphase and lithium trapping in the electrode. The former has been heavily investigated while the latter has been largely neglected. Here, through both theoretical calculation and experimental study, we demonstrate that by introducing Ge substitution in Si with fine compositional control, the energy barrier of lithium diffusion will be greatly reduced because of the lattice expansion. This effect of isovalent isomorphism significantly reduces the Li trapping by ~70% and improves the initial Coulombic efficiency to over 90%. We expect that various systems of battery materials can benefit from this mechanism for fine-tuning their electrochemical behaviors.},
doi = {10.1126/sciadv.aax0651},
journal = {Science Advances},
number = [11],
volume = [5],
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries
journal, January 2012

  • Lin, Yong-Mao; Klavetter, Kyle C.; Abel, Paul R.
  • Chemical Communications, Vol. 48, Issue 58
  • DOI: 10.1039/c2cc31712e

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy
journal, October 2018


High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

Sodium Carboxymethyl Cellulose
journal, January 2007

  • Li, Jing; Lewis, R. B.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 2
  • DOI: 10.1149/1.2398725

Sn 78 Ge 22 @Carbon Core−Shell Nanowires as Fast and High-Capacity Lithium Storage Media
journal, September 2007


High-capacity battery cathode prelithiation to offset initial lithium loss
journal, January 2016


Bottleneck of Diffusion and Inductive Effects in Li 10 Ge 1– x Sn x P 2 S 12
journal, February 2018


High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Nanostructured Si (1- x ) Ge x for Tunable Thin Film Lithium-Ion Battery Anodes
journal, March 2013

  • Abel, Paul R.; Chockla, Aaron M.; Lin, Yong-Mao
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn3053632

From molecules to solids with the DMol3 approach
journal, November 2000

  • Delley, B.
  • The Journal of Chemical Physics, Vol. 113, Issue 18
  • DOI: 10.1063/1.1316015

Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode
journal, August 2015


An all‐electron numerical method for solving the local density functional for polyatomic molecules
journal, January 1990

  • Delley, B.
  • The Journal of Chemical Physics, Vol. 92, Issue 1
  • DOI: 10.1063/1.458452

Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
journal, January 2016


Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Mesoporous Silicon Hollow Nanocubes Derived from Metal–Organic Framework Template for Advanced Lithium-Ion Battery Anode
journal, April 2017


Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries
journal, January 2017

  • Rehnlund, David; Lindgren, Fredrik; Böhme, Solveig
  • Energy & Environmental Science, Vol. 10, Issue 6
  • DOI: 10.1039/C7EE00244K

Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I
journal, October 1955

  • Mulliken, R. S.
  • The Journal of Chemical Physics, Vol. 23, Issue 10
  • DOI: 10.1063/1.1740588

Artificial Solid Electrolyte Interphase-Protected Li x Si Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries
journal, June 2015

  • Zhao, Jie; Lu, Zhenda; Wang, Haotian
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b04526

Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
journal, June 2015

  • Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8393

The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes
journal, August 2015


Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries
journal, July 2017


Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Ab initio and kinetic Monte Carlo study of lithium diffusion in LiSi, Li12Si7, Li13Si5 and Li15Si4
journal, October 2016


The synchronous-transit method for determining reaction pathways and locating molecular transition states
journal, July 1977


Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries
journal, December 2007


Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells
journal, December 2015


Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes
journal, December 2011

  • Etacheri, Vinodkumar; Haik, Ortal; Goffer, Yossi
  • Langmuir, Vol. 28, Issue 1
  • DOI: 10.1021/la203712s

Cycling Behavior of Thin Film LiAl Electrodes with Liquid and Solid Electrolytes
journal, January 1985

  • Maskell, W. C.
  • Journal of The Electrochemical Society, Vol. 132, Issue 7
  • DOI: 10.1149/1.2114174

First-principles simulation: ideas, illustrations and the CASTEP code
journal, March 2002

  • Segall, M. D.; Lindan, Philip J. D.; Probert, M. J.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 11
  • DOI: 10.1088/0953-8984/14/11/301

Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents
journal, October 2014

  • Zhao, Jie; Lu, Zhenda; Liu, Nian
  • Nature Communications, Vol. 5, Article No. 5088
  • DOI: 10.1038/ncomms6088

Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
journal, September 1992


Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions
journal, January 1994

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054718

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
journal, September 2011


A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires
journal, January 1998


On the origin of the capacity fading for aluminium negative electrodes in Li-ion batteries
journal, December 2014


Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes
journal, February 2015

  • Lu, Zhenda; Liu, Nian; Lee, Hyun-Wook
  • ACS Nano, Vol. 9, Issue 3
  • DOI: 10.1021/nn505410q

Towards greener and more sustainable batteries for electrical energy storage
journal, November 2014


Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries
journal, March 2017

  • Chen, Shuangqiang; Shen, Laifa; van Aken, Peter A.
  • Advanced Materials, Vol. 29, Issue 21
  • DOI: 10.1002/adma.201605650

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


First principles methods using CASTEP
journal, January 2005

  • Clark, Stewart J.; Segall, Matthew D.; Pickard, Chris J.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 220, Issue 5/6
  • DOI: 10.1524/zkri.220.5.567.65075

Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy
journal, February 2014

  • Ogata, K.; Salager, E.; Kerr, C. J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4217

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries
journal, August 2016


Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
journal, July 2014

  • Li, Xiaolin; Gu, Meng; Hu, Shenyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5105

Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life
journal, April 2012

  • Ge, Mingyuan; Rong, Jiepeng; Fang, Xin
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300206e

Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−M )P2S12 (M = Si, Sn)
journal, December 2014


Micro-sized nano-porous Si/C anodes for lithium ion batteries
journal, January 2015


Preparation, Structural Characterization, and Electrical Conductivity of Highly Ion-Conducting Glasses and Glass Ceramics in the System Li 1+ x Al x Sn y Ge 2-(x+y) (PO 4 ) 3
journal, June 2016

  • Santagneli, Silvia H.; Baldacim, Helio V. A.; Ribeiro, Sidney J. L.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 27
  • DOI: 10.1021/acs.jpcc.6b04839

Alloy Design for Lithium-Ion Battery Anodes
journal, January 2007

  • Obrovac, M. N.; Christensen, Leif; Le, Dinh Ba
  • Journal of The Electrochemical Society, Vol. 154, Issue 9, p. A849-A855
  • DOI: 10.1149/1.2752985