DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct Observation of Infrared Plasmonic Fano Antiresonances by a Nanoscale Electron Probe

Abstract

In this report, we exploit recent breakthroughs in monochromated aberration-corrected scanning transmission electron microscopy (STEM) to resolve infrared plasmonic Fano antiresonances in individual nanofabricated disk-rod dimers. Using a combination of electron energy-loss spectroscopy and theoretical modeling, we investigate and characterize a subspace of the weak coupling regime between quasi-discrete and quasi-continuum localized surface plasmon resonances where infrared plasmonic Fano antiresonances appear. Our research illustrates the capability of STEM instrumentation to experimentally observe nanoscale plasmonic responses that were previously the domain only of higher-resolution infrared spectroscopies.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [3]; ORCiD logo [4];  [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [3]
  1. Univ. of Washington, Seattle, WA (United States); Dept. of Physics
  2. Univ. of Notre Dame, IN (United States). Dept. of Chemistry and Biochemistry
  3. Univ. of Washington, Seattle, WA (United States). Dept. of Chemistry
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
  5. Univ. of Tennessee, Knoxville, TN (United States) Dept. of Materials Science and Engineering
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS) Dept. of Materials Science and Engineering
  7. Univ. of Notre Dame, IN (United States). Dept. of Chemistry and Biochemistry; Univ. of Tennessee, Knoxville, TN (United States) Dept of Materials Science and Engineering
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Notre Dame, IN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1597420
Alternate Identifier(s):
OSTI ID: 1907178
Grant/Contract Number:  
SC0018040; AC05-00OR22725; SC0018169
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 123; Journal Issue: 17; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 74 ATOMIC AND MOLECULAR PHYSICS; Surface plasmons; Physical Systems; Nanodisks; Nanostructures; Nanowires; Noble metals; Optical microcavities; High-resolution electron energy loss spectroscopy; Infrared spectroscopy

Citation Formats

Smith, Kevin C, Olafsson, Agust, Hu, Xuan, Quillin, Steven C, Idrobo, Juan Carlos, Collette, Robyn, Rack, Philip D, Camden, Jon P, and Masiello, David J. Direct Observation of Infrared Plasmonic Fano Antiresonances by a Nanoscale Electron Probe. United States: N. p., 2019. Web. doi:10.1103/PhysRevLett.123.177401.
Smith, Kevin C, Olafsson, Agust, Hu, Xuan, Quillin, Steven C, Idrobo, Juan Carlos, Collette, Robyn, Rack, Philip D, Camden, Jon P, & Masiello, David J. Direct Observation of Infrared Plasmonic Fano Antiresonances by a Nanoscale Electron Probe. United States. https://doi.org/10.1103/PhysRevLett.123.177401
Smith, Kevin C, Olafsson, Agust, Hu, Xuan, Quillin, Steven C, Idrobo, Juan Carlos, Collette, Robyn, Rack, Philip D, Camden, Jon P, and Masiello, David J. Mon . "Direct Observation of Infrared Plasmonic Fano Antiresonances by a Nanoscale Electron Probe". United States. https://doi.org/10.1103/PhysRevLett.123.177401. https://www.osti.gov/servlets/purl/1597420.
@article{osti_1597420,
title = {Direct Observation of Infrared Plasmonic Fano Antiresonances by a Nanoscale Electron Probe},
author = {Smith, Kevin C and Olafsson, Agust and Hu, Xuan and Quillin, Steven C and Idrobo, Juan Carlos and Collette, Robyn and Rack, Philip D and Camden, Jon P and Masiello, David J},
abstractNote = {In this report, we exploit recent breakthroughs in monochromated aberration-corrected scanning transmission electron microscopy (STEM) to resolve infrared plasmonic Fano antiresonances in individual nanofabricated disk-rod dimers. Using a combination of electron energy-loss spectroscopy and theoretical modeling, we investigate and characterize a subspace of the weak coupling regime between quasi-discrete and quasi-continuum localized surface plasmon resonances where infrared plasmonic Fano antiresonances appear. Our research illustrates the capability of STEM instrumentation to experimentally observe nanoscale plasmonic responses that were previously the domain only of higher-resolution infrared spectroscopies.},
doi = {10.1103/PhysRevLett.123.177401},
journal = {Physical Review Letters},
number = 17,
volume = 123,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Schematic of a gold disk-rod dimer indicating the relevant system parameters and electron-beam location where spectra are acquired (red x). (b) Experimental EEL spectrum of a dimer consisting of a 800 nm diameter gold disk and a 5 $µ$m long gold rod separated by a 50 nmmore » gap (green curve). Blue and red curves show the monomer spectra for a near-identical disk and rod, respectively. The dimer spectrum is not a simple sum of the two monomer spectra, but instead exhibits a narrow dip at the spectral location of each rod mode (dashed lines). A typical example of the EEL spectrum acquired at the rod end may be found in the Supplemental Material.« less

Save / Share:

Works referenced in this record:

A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance
journal, January 2013

  • Shafiei, Farbod; Monticone, Francesco; Le, Khai Q.
  • Nature Nanotechnology, Vol. 8, Issue 2
  • DOI: 10.1038/nnano.2012.249

Mechanisms of Fano Resonances in Coupled Plasmonic Systems
journal, April 2013

  • Lovera, Andrea; Gallinet, Benjamin; Nordlander, Peter
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn401175j

Sculpting Fano Resonances To Control Photonic–Plasmonic Hybridization
journal, October 2017


Fano Resonances in Electronic Transport through a Single Electron Transistor
text, January 1999


Combined Tight-Binding and Numerical Electrodynamics Understanding of the STEM/EELS Magneto-optical Responses of Aromatic Plasmon-Supporting Metal Oligomers
journal, September 2014

  • Cherqui, Charles; Bigelow, Nicholas W.; Vaschillo, Alex
  • ACS Photonics, Vol. 1, Issue 10
  • DOI: 10.1021/ph5002268

Plasmonic Response of Bent Silver Nanowires for Nanophotonic Subwavelength Waveguiding
journal, February 2013


Observation of Quantum Tunneling between Two Plasmonic Nanoparticles
journal, January 2013

  • Scholl, Jonathan A.; García-Etxarri, Aitzol; Koh, Ai Leen
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl304078v

Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators
journal, January 2012


Diskrete Energieverluste schneller Elektronen in Festk�rpern
journal, October 1941


Optical microresonators as single-particle absorption spectrometers
journal, November 2016


Surface plasmon modes of a single silver nanorod: an electron energy loss study
journal, January 2011

  • Nicoletti, Olivia; Wubs, Martijn; Mortensen, N. Asger
  • Optics Express, Vol. 19, Issue 16
  • DOI: 10.1364/OE.19.015371

A Subwavelength Plasmonic Metamolecule Exhibiting Magnetic-Based Optical Fano Resonance
conference, January 2013


Optical excitations in electron microscopy
text, January 2009


Fano resonances in nanoscale structures
journal, August 2010

  • Miroshnichenko, Andrey E.; Flach, Sergej; Kivshar, Yuri S.
  • Reviews of Modern Physics, Vol. 82, Issue 3
  • DOI: 10.1103/RevModPhys.82.2257

Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS
journal, April 2015


Excitation dependent Fano-like interference effects in plasmonic silver nanorods
journal, October 2014


Toroidal Plasmonic Eigenmodes in Oligomer Nanocavities for the Visible
journal, September 2012

  • Ögüt, Burcu; Talebi, Nahid; Vogelgesang, Ralf
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl302418n

Self-Assembled Plasmonic Nanoparticle Clusters
conference, January 2010

  • Fan, Jonathan; Wu, Chihhui; Bao, Kui
  • Quantum Electronics and Laser Science Conference, Conference on Lasers and Electro-Optics 2010
  • DOI: 10.1364/qels.2010.qfc3

Mapping plasmons at the nanometer scale in an electron microscope
journal, January 2014

  • Kociak, Mathieu; Stéphan, Odile
  • Chemical Society Reviews, Vol. 43, Issue 11
  • DOI: 10.1039/c3cs60478k

High-Resolution Imaging and Spectroscopy of Multipolar Plasmonic Resonances in Aluminum Nanoantennas
journal, September 2014

  • Martin, Jérôme; Kociak, Mathieu; Mahfoud, Zackaria
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl501850m

Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna
journal, February 2012

  • López-Tejeira, F.; Paniagua-Domínguez, R.; Rodríguez-Oliveros, R.
  • New Journal of Physics, Vol. 14, Issue 2
  • DOI: 10.1088/1367-2630/14/2/023035

Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy
journal, December 2017


Imaging Energy Transfer in Pt-Decorated Au Nanoprisms via Electron Energy-Loss Spectroscopy
journal, September 2016

  • Griffin, Sarah; Montoni, Nicholas P.; Li, Guoliang
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 19
  • DOI: 10.1021/acs.jpclett.6b01878

Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping
journal, May 2018


Inelastic scattering of electrons by helium
journal, April 1981


Single Particle Plasmon Spectroscopy of Silver Nanowires and Gold Nanorods
journal, October 2008

  • NʼGom, Moussa; Ringnalda, Jan; Mansfield, John F.
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl801504v

Plasma Losses by Fast Electrons in Thin Films
journal, June 1957


Fano resonances in photonics
journal, September 2017

  • Limonov, Mikhail F.; Rybin, Mikhail V.; Poddubny, Alexander N.
  • Nature Photonics, Vol. 11, Issue 9
  • DOI: 10.1038/nphoton.2017.142

Probing decoherence through Fano resonances
conference, December 2010


Collision Cross-Section Studies on Molecular Gases and the Dissociation of Oxygen and Water
journal, January 1959

  • Lassettre, Edwin N.
  • Radiation Research Supplement, Vol. 1
  • DOI: 10.2307/3583664

High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures
journal, March 2011

  • Koh, Ai Leen; Fernández-Domínguez, Antonio I.; McComb, David W.
  • Nano Letters, Vol. 11, Issue 3
  • DOI: 10.1021/nl104410t

Characterization of the Electron- and Photon-Driven Plasmonic Excitations of Metal Nanorods
journal, July 2012

  • Bigelow, Nicholas W.; Vaschillo, Alex; Iberi, Vighter
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn302980u

Signatures of Fano Interferences in the Electron Energy Loss Spectroscopy and Cathodoluminescence of Symmetry-Broken Nanorod Dimers
journal, April 2013

  • Bigelow, Nicholas W.; Vaschillo, Alex; Camden, Jon P.
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn401161n

Self-Assembled Plasmonic Nanoparticle Clusters
journal, May 2010


Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes
journal, December 2017


Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS 2 at Room Temperature
journal, April 2018

  • Wang, Mingsong; Krasnok, Alex; Zhang, Tianyi
  • Advanced Materials, Vol. 30, Issue 22
  • DOI: 10.1002/adma.201705779

Vibrational spectroscopy in the electron microscope
journal, October 2014

  • Krivanek, Ondrej L.; Lovejoy, Tracy C.; Dellby, Niklas
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13870

Real-Space Mapping of Fano Interference in Plasmonic Metamolecules
journal, September 2011

  • Alonso-Gonzalez, Pablo; Schnell, Martin; Sarriugarte, Paulo
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl2021366

STEM/EELS Imaging of Magnetic Hybridization in Symmetric and Symmetry-Broken Plasmon Oligomer Dimers and All-Magnetic Fano Interference
journal, September 2016


Probing Decoherence through Fano Resonances
journal, July 2010


Monochromated STEM with a 30 meV-wide, atom-sized electron probe
journal, January 2013

  • Krivanek, Ondrej L.; Lovejoy, Tracy C.; Dellby, Niklas
  • Microscopy, Vol. 62, Issue 1
  • DOI: 10.1093/jmicro/dfs089

Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H 2 on Au
journal, December 2012

  • Mukherjee, Shaunak; Libisch, Florian; Large, Nicolas
  • Nano Letters, Vol. 13, Issue 1
  • DOI: 10.1021/nl303940z

Fano resonances in nanoscale structures
text, January 2009


Characterizing localized surface plasmons using electron energy-loss spectroscopy
text, January 2015


Tunable Spectral Ordering of Magnetic Plasmon Resonances in Noble Metal Nanoclusters
journal, May 2018


Tunable Fano resonances in transport through microwave billiards
journal, April 2004


Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe
journal, April 2011

  • Rossouw, D.; Couillard, M.; Vickery, J.
  • Nano Letters, Vol. 11, Issue 4
  • DOI: 10.1021/nl200634w

Effects of Configuration Interaction on Intensities and Phase Shifts
journal, December 1961


Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance
journal, November 2008

  • Hao, Feng; Sonnefraud, Yannick; Dorpe, Pol Van
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl802509r

Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy
journal, May 2016


Strong coupling, energy splitting, and level crossings: A classical perspective
journal, November 2010

  • Novotny, Lukas
  • American Journal of Physics, Vol. 78, Issue 11
  • DOI: 10.1119/1.3471177

Electromagnetically induced transparency in optical microcavities
journal, March 2017


Optical excitations in electron microscopy
journal, February 2010


Switching from Visibility to Invisibility via Fano Resonances: Theory and Experiment
journal, March 2015

  • Rybin, Mikhail V.; Filonov, Dmitry S.; Belov, Pavel A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08774

Classical and quantum distinctions between weak and strong coupling
journal, January 2016


Fano resonances in electronic transport through a single-electron transistor
journal, July 2000


Nanoplasmonics: Classical down to the Nanometer Scale
journal, February 2012

  • Duan, Huigao; Fernández-Domínguez, Antonio I.; Bosman, Michel
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl3001309

Inelastic Scattering of Electrons by Helium
journal, March 1964

  • Lassettre, E. N.; Krasnow, M. E.; Silverman, S.
  • The Journal of Chemical Physics, Vol. 40, Issue 5
  • DOI: 10.1063/1.1725303

Mapping vibrational surface and bulk modes in a single nanocube
journal, March 2017

  • Lagos, Maureen J.; Trügler, Andreas; Hohenester, Ulrich
  • Nature, Vol. 543, Issue 7646
  • DOI: 10.1038/nature21699

Mode Parity-Controlled Fano- and Lorentz-like Line Shapes Arising in Plasmonic Nanorods
journal, April 2014

  • Verellen, Niels; López-Tejeira, Fernando; Paniagua-Domínguez, Ramón
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404670x

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.