skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering

Abstract

Titanium nitride (TiN) has recently emerged as an attractive alternative material for plasmonics. However, the typical high-temperature deposition of plasmonic TiN using either sputtering or atomic layer deposition has greatly limited its potential applications and prevented its integration into existing CMOS device architectures. Here, we demonstrate highly plasmonic TiN thin films and nanostructures by a room-temperature, low-power, and bias-free reactive sputtering process. We investigate the optical properties of the TiN films and their dependence on the sputtering conditions and substrate materials. We find that our TiN possesses one of the largest negative values of the real part of the dielectric function as compared to all other plasmonic TiN films reported to date. Two-dimensional periodic arrays of TiN nanodisks are then fabricated, from which we validate that strong plasmonic resonances are supported. Our room-temperature deposition process can allow for fabricating complex plasmonic TiN nanostructures and be integrated into the fabrication of existing CMOS-based photonic devices to enhance their performance and functionalities.

Authors:
 [1];  [2];  [3]; ORCiD logo [4];  [2];  [2]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [5]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT); National Taiwan Normal Univ., Taipei (Taiwan)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies
  3. National Chiao Tung Univ., Tainan (Taiwan). Inst. of Photonic System
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division; USDOE National Nuclear Security Administration (NNSA); Ministry of Science and Technology of Taiwan (MOST)
OSTI Identifier:
1597357
Report Number(s):
LA-UR-19-29707
Journal ID: ISSN 2045-2322
Grant/Contract Number:  
89233218CNA000001; AC52-06NA25396; MOST-106-2221-E-009-122-MY3
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
Energy Sciences; Material Science; Nanophotonics and plasmonics; Optical materials and structures

Citation Formats

Chang, Chun-Chieh, Nogan, John, Yang, Zu-Po, de Melo Kort-Kamp, Wilton Junior, Ross, Willard, Luk, Ting S., Dalvit, Diego Alejandro Roberto, Azad, Abul Kalam, and Chen, Houtong. Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering. United States: N. p., 2019. Web. doi:10.1038/s41598-019-51236-3.
Chang, Chun-Chieh, Nogan, John, Yang, Zu-Po, de Melo Kort-Kamp, Wilton Junior, Ross, Willard, Luk, Ting S., Dalvit, Diego Alejandro Roberto, Azad, Abul Kalam, & Chen, Houtong. Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering. United States. doi:10.1038/s41598-019-51236-3.
Chang, Chun-Chieh, Nogan, John, Yang, Zu-Po, de Melo Kort-Kamp, Wilton Junior, Ross, Willard, Luk, Ting S., Dalvit, Diego Alejandro Roberto, Azad, Abul Kalam, and Chen, Houtong. Fri . "Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering". United States. doi:10.1038/s41598-019-51236-3. https://www.osti.gov/servlets/purl/1597357.
@article{osti_1597357,
title = {Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering},
author = {Chang, Chun-Chieh and Nogan, John and Yang, Zu-Po and de Melo Kort-Kamp, Wilton Junior and Ross, Willard and Luk, Ting S. and Dalvit, Diego Alejandro Roberto and Azad, Abul Kalam and Chen, Houtong},
abstractNote = {Titanium nitride (TiN) has recently emerged as an attractive alternative material for plasmonics. However, the typical high-temperature deposition of plasmonic TiN using either sputtering or atomic layer deposition has greatly limited its potential applications and prevented its integration into existing CMOS device architectures. Here, we demonstrate highly plasmonic TiN thin films and nanostructures by a room-temperature, low-power, and bias-free reactive sputtering process. We investigate the optical properties of the TiN films and their dependence on the sputtering conditions and substrate materials. We find that our TiN possesses one of the largest negative values of the real part of the dielectric function as compared to all other plasmonic TiN films reported to date. Two-dimensional periodic arrays of TiN nanodisks are then fabricated, from which we validate that strong plasmonic resonances are supported. Our room-temperature deposition process can allow for fabricating complex plasmonic TiN nanostructures and be integrated into the fabrication of existing CMOS-based photonic devices to enhance their performance and functionalities.},
doi = {10.1038/s41598-019-51236-3},
journal = {Scientific Reports},
number = 1,
volume = 9,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Plasmon-induced hot carrier science and technology
journal, January 2015

  • Brongersma, Mark L.; Halas, Naomi J.; Nordlander, Peter
  • Nature Nanotechnology, Vol. 10, Issue 1
  • DOI: 10.1038/nnano.2014.311

Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics
journal, January 2018

  • Cleary, Justin W.; Smith, Evan M.; Leedy, Kevin D.
  • Optical Materials Express, Vol. 8, Issue 5
  • DOI: 10.1364/OME.8.001231

Optical and Structural Properties of Ultra-thin Gold Films
journal, September 2014

  • Kossoy, Anna; Merk, Virginia; Simakov, Denis
  • Advanced Optical Materials, Vol. 3, Issue 1
  • DOI: 10.1002/adom.201400345

Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films
journal, November 2001

  • Patsalas, P.; Logothetidis, S.
  • Journal of Applied Physics, Vol. 90, Issue 9
  • DOI: 10.1063/1.1403677

In situ spectroscopic ellipsometry to monitor the process of TiN x thin films deposited by reactive sputtering
journal, February 1995

  • Logothetidis, S.; Alexandrou, I.; Papadopoulos, A.
  • Journal of Applied Physics, Vol. 77, Issue 3
  • DOI: 10.1063/1.358963

Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]
journal, January 2011

  • Naik, Gururaj V.; Kim, Jongbum; Boltasseva, Alexandra
  • Optical Materials Express, Vol. 1, Issue 6
  • DOI: 10.1364/OME.1.001090

Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoretical Approach
journal, December 2015


Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber
journal, October 2014


Titanium Nitride Nanoparticles as Plasmonic Solar Heat Transducers
journal, January 2016

  • Ishii, Satoshi; Sugavaneshwar, Ramu Pasupathi; Nagao, Tadaaki
  • The Journal of Physical Chemistry C, Vol. 120, Issue 4
  • DOI: 10.1021/acs.jpcc.5b09604

Optical Properties and Plasmonic Performance of Titanium Nitride
journal, May 2015

  • Patsalas, Panos; Kalfagiannis, Nikolaos; Kassavetis, Spyros
  • Materials, Vol. 8, Issue 6
  • DOI: 10.3390/ma8063128

Searching for better plasmonic materials
journal, March 2010


Plasma assisted physical vapor deposition processes: A review
journal, May 1985

  • Bunshah, R. F.; Deshpandey, C. V.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 3, Issue 3
  • DOI: 10.1116/1.572993

The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering
journal, January 1990

  • Vasile, M. J.; Emerson, A. B.; Baiocchi, F. A.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 8, Issue 1
  • DOI: 10.1116/1.576995

Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles
journal, November 2013

  • Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl4033457

Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering
journal, January 2016

  • Yang, Zih-Ying; Chen, Yi-Hsun; Liao, Bo-Huei
  • Optical Materials Express, Vol. 6, Issue 2
  • DOI: 10.1364/OME.6.000540

Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas
journal, August 2016


Fully CMOS-compatible titanium nitride nanoantennas
journal, February 2016

  • Briggs, Justin A.; Naik, Gururaj V.; Petach, Trevor A.
  • Applied Physics Letters, Vol. 108, Issue 5
  • DOI: 10.1063/1.4941413

Quasi-coherent thermal emitter based on refractory plasmonic materials
journal, January 2015

  • Liu, Jingjing; Guler, Urcan; Lagutchev, Alexei
  • Optical Materials Express, Vol. 5, Issue 12
  • DOI: 10.1364/OME.5.002721

Alternative Plasmonic Materials: Beyond Gold and Silver
journal, May 2013

  • Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra
  • Advanced Materials, Vol. 25, Issue 24
  • DOI: 10.1002/adma.201205076

Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications
journal, January 2015

  • Zgrabik, Christine M.; Hu, Evelyn L.
  • Optical Materials Express, Vol. 5, Issue 12
  • DOI: 10.1364/OME.5.002786

Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion
journal, October 2015

  • Lalisse, Adrien; Tessier, Gilles; Plain, Jérome
  • The Journal of Physical Chemistry C, Vol. 119, Issue 45
  • DOI: 10.1021/acs.jpcc.5b09294

Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials
journal, June 2015

  • Wang, Yu; Sugimoto, Hiroshi; Inampudi, Sandeep
  • Applied Physics Letters, Vol. 106, Issue 24
  • DOI: 10.1063/1.4922874

Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study
journal, October 1992

  • Saha, Naresh C.; Tompkins, Harland G.
  • Journal of Applied Physics, Vol. 72, Issue 7
  • DOI: 10.1063/1.351465

Optical and electrical properties of reactively sputtered TiN, ZrN, and HfN thin films
conference, September 1994

  • Edlou, Samad M.; Simons, John C.; Al-Jumaily, Ghanim A.
  • SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.185781

Optical properties of TiN films deposited by direct current reactive sputtering
journal, February 2000

  • Adachi, Sadao; Takahashi, Mitsutoshi
  • Journal of Applied Physics, Vol. 87, Issue 3
  • DOI: 10.1063/1.372006

Variation of color in titanium and zirconium nitride decorative thin films
journal, August 2002


Quantifying Figures of Merit for Localized Surface Plasmon Resonance Applications: A Materials Survey
journal, January 2019


The Scherrer Formula for X-Ray Particle Size Determination
journal, November 1939


Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications
journal, August 2017

  • Braic, Laurentiu; Vasilantonakis, Nikolaos; Mihai, Andrei
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 35
  • DOI: 10.1021/acsami.7b07660

Flexible Plasmonics on Unconventional and Nonplanar Substrates
journal, August 2011


Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications
journal, December 2017


Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films
journal, May 2017


Controlling the Plasmonic Properties of Ultrathin TiN Films at the Atomic Level
journal, December 2017


Self-Powered Broadband Photodetector using Plasmonic Titanium Nitride
journal, September 2015

  • Hussain, Amreen A.; Sharma, Bikash; Barman, Tapan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 6
  • DOI: 10.1021/acsami.6b00249

Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials
journal, May 2014

  • Naik, G. V.; Saha, B.; Liu, J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 21
  • DOI: 10.1073/pnas.1319446111

Wide tuning of the optical and structural properties of alternative plasmonic materials
journal, January 2015

  • Wang, Yu; Capretti, Antonio; Dal Negro, Luca
  • Optical Materials Express, Vol. 5, Issue 11
  • DOI: 10.1364/OME.5.002415

Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films
journal, January 2017

  • Yu, Ing-Song; Cheng, Hsyi-En; Chang, Chun-Chieh
  • Optical Materials Express, Vol. 7, Issue 3
  • DOI: 10.1364/OME.7.000777

Optical Constants of the Noble Metals
journal, December 1972


Temperature-dependent optical properties of gold thin films
journal, January 2016

  • Reddy, Harsha; Guler, Urcan; Kildishev, Alexander V.
  • Optical Materials Express, Vol. 6, Issue 9
  • DOI: 10.1364/OME.6.002776

Titanium nitride as a plasmonic material for visible and near-infrared wavelengths
journal, January 2012

  • Naik, Gururaj V.; Schroeder, Jeremy L.; Ni, Xingjie
  • Optical Materials Express, Vol. 2, Issue 4
  • DOI: 10.1364/OME.2.000478

Plasmonic properties of refractory titanium nitride
journal, March 2017


TiO 2– x -Enhanced IR Hot Carrier Based Photodetection in Metal Thin Film–Si Junctions
journal, March 2019